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Week 9: Ordering, Curricula & Difficulty



Recall: from closed world ... GWILIE e contnlAl &2 hessian.A

What if we don’t know the boundary & aren’t constrained on our testing examples?

What if future or unrelated data is in the test set?

Task 3 Task 5
first second first second first second first second first second
class class class class class class class class class class

Figure 1: Schematic of split MNIST task protocol.

van de Ven & Tolias, “Three scenarios for continual learning”, arXiv:1904.07734, 2019
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Recall: ... to open world GWLIE e contraAl - @ hessianA

In retrospect: although there have been increments, the types of
continual learning we have seen so far were indeed in a closed world

Training phase

Parameter Learning Phase Incremental Learning Phase

Testing phase

Known Categories

Closed Set Testing

Unknown Categories

4

Open Set Testing

Figure from CVPR16 “Statistical Methods for Open Set Recognition” by Scheirer &
Boult, https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf



https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf

Recall: open world learning GUILIE o contnuaAl &2 hessian.Al

Open world learning tries to “puzzie together” the pieces we have seen so far

"An effective open world recognition system must efficiently perform four tasks:
detect unknown, choose which points to label for addition to the model, label the
points, and update the model” (Boult et al, “Learning and the Unknown”, AAAI 2019)

q \ ——|Label Data ~ - .
e World with Knowns (K) & — e LU: Labeled
Unknowns Unknowns (UU) e NU: Novel Unknowns e K: Known
: “ - Unknowns ’ ) r
>~ Recognize [ Detectas — J ™ Incremental " Scale
L

as Known Unknown - " earning 3

Bendale & Boult ,“Towards Open World Recognition”, CVPR 2015
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What about concept/task order? GWILILE o connwsAl - 2 hessian.Al

What about the order in which we learn? If we have the choice, which
(identified unknown) data should we start with/include next?

T LN L f
v &
=

Parameter Learning Phase Incremental Learning Phase

Training phase

Testing phase

Known Categories

Closed Set Testing

Unknown Categories

Open Set Testing

Figure from CVPR16 “Statistical Methods for Open Set Recognition” by Scheirer &
Boult, https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf
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Curriculum learning



Curriculum Learning GWILILE o connsAl - &2 hessian.A

Curriculum learning: a definition

Definition 1: Original Curriculum Learning [6]. A cur-
riculum is a sequence of training criteria over 1’ training
steps: C = (Q1,...,Q4¢,...,Qr). Each criterion Q); is a
reweighting of the target training distribution P(z2):

Qt(z) x Wi(z)P(z) Vexample z € training set D, (1)
such that the following three conditions are satistied:

1) The entropy of distributions gradually increases,

i.e., H(Qt) < H(Qt+1).
2) The weight for any example increases, i.e.,

Wi(z) < Wii1(z) Vz e D.
3) Qr(z) = P(z).

From Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021, based on original definition by Bengio et al, “Curriculum Learning”, ICML 2009



Curriculum Learning GWILILE o connsAl - &2 hessian.A

Curriculum learning: the more intuitive definition
(with a little bit of a tautology)

Definition 3: Generalized Curriculum Learning. Dis-
carding the definition of @Q; (Eq. 1) and its three conditions
in Definition 1, a curriculum is a sequence of training
criteria over 1’ training steps. Each criterion (); includes the
design for all the elements in training a machine learning
model, e.g., data/tasks, model capacity, learning objective,
etc. Curriculum learning is the strategy that trains a model
with such a curriculum.

From Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021, based on original definition by Bengio et al, “Curriculum Learning”, ICML 2009
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Recall L1: a motivating example GU/LIE = caal & hessiona

Example: Ranking language model trained
with vs without curriculum on Wikipedia

3.5

“Error” is log of the rank of the next o
word (within 20k-word

vocabulary).

log(rank next word)

1. The curriculum-trained model
skips examples with words e
outside of 5k most frequent words

million
updates

Bengio et al, “Curriculum Learning”, ICML 2009

2. Then skips examples outside 10k
most frequent words and so on
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What are central questions in curriculum learning?
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Curriculum learning GWALIE e connwlAl &2 hessian.A

Two key challenges:

Scoring function (difficulty measurer):
Any function that provides us with an
estimate of the difficulty of the instances in

our dataset(s).

Pacing function (training scheduler):
(sometimes also called competence, as we'll

see later)
The function that tells us how to interleave

samples into the training process over time.



Curriculum learning

Two key challenges:

Scoring function (difficulty measurer):
Any function that provides us with an
estimate of the difficulty of the instances in
our dataset(s).

Pacing function (training scheduler):
(sometimes also called competence, as we'll
see later)

The function that tells us how to interleave
samples into the training process over time.

GWILILE oo continuaAl - &2 hessian.Al

Algorithm 1 Curriculum learning method

Input: pacing function gy, scoring function f, data X.
Output: sequence of mini-batches []B%l, , B M].

sort X according to f, in ascending order
result < |]
forall: =1,..., M do
size <— gy(1)
X, « X1, ..., size]
uniformly sample IB; from X
append ]B; to result
end for
return result

Algorithm from Hacohen & Weinshall, “On the power of
curriculum learning in deep networks”, ICML 2019
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Curriculum learning

Let’s start by considering a pre-defined curriculum,
inspired by learning from “textbook style” content

Training
set
|
| Difficulty
Measurer

Training

Sorted | Scheduler
data

Curriculum Design

GWILILE oo continuaAl - &2 hessian.Al

-----

. Model

Sample
batch @t

Trainer

@

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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Defining difficulty
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GWILILE oo continuaAl - &2 hessian.Al
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Model
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Training process

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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If we want to define the
curriculum up-front, according
to prior knowledge, then:

what is an "easy” & what is a
“harder” subset/dataset?
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Can you think of ways to define “difficulty”?



How to define difficulty

GWILILE oo continuaAl - &2 hessian.Al

TABLE 2

Common types of predefined Difficulty Measurer. The “+” in ocEasy
means the higher the measured value, the easier the data example,
and the “-" has the opposite meaning.

Difficulty Measurer | Angle Data Type ocEasy
Sentence length [86], |107] Complexity Text - )
Number of objects [122] Complexity Images -
# conj. [50], #phrases [113] Complexity Text -
Parse tree depth [113] Complexity Text -
Nesting of operations [131] Complexity Programs -
Shape variability [6] Diversity Images -
Word rarity [50], |86] Diversity Text -
POS entropy [113] | Diversity Text -
Mahalanobis distance |14] Diversity Tabular -
Cluster density [11], |31] Noise Images s
Data source |10] Noise Images /
SNR / SND [7], |89] Noise Audio -
Grammaticality [66] Domain Text +
Prototypicality [113] Domain Text +
Medical based (44] | Domain X-ray film /
Retrieval based |18], [82] Domain Retrieval /
Intensity [30] / Severity [111] Intensity Images +
Image difficulty score [106], |1 14] Annotation Images -
Norm of word vector |68| Multiple Text -

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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Is difficulty task & model specific?



How to define difficulty GUVALILE o contnatAl - @2 hessian.A

We have already seen that specific tasks allow for specific definitions of difficulty
Example: natural language translation (sentence length)

Sentence Length 004 HENSY ] Sentence Difficulty

Thank you very much! 4 Thank you very much! 0.01

Barack Obama loves ... 13 Barack Obama loves.. 0.15

My name is ... 6 My name is ... 0.03

What did she say ... 123 What did she say ... 0.95
0.00 ° - 0

0 100 0 100
Sentence Length Sent '

Figure 2: Example visualization of the preprocessing sequence used in the proposed algorithm. The histogram
shown 1s that of sentence lengths from the WMT-16 En»De dataset used in our experiments. Here sentence lengths

represent an example difficulty scoring function, d. “CDF’ stands for the empirical “cumulative density function”
obtained from the histogram on the left plot.

Platanios et al, “Competence based curriculum learning for neural machine translation”, NAACL-HIT 2019



What is difficulty for a task? GUILIE o connuaAl &2 hessian.A

We have already seen that specific tasks allow for specific definitions of difficulty
Example: image segmentation (entropy/clutter)

Figure 1. Images with difficulty scores predicted by our system in increasing order of their difficulty.

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016
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What is difficulty for a task? GUILIE o connuaAl &2 hessian.A

There are various dimensions to difficulty, not just (basic) data statistics.
Especially if we think about factors that relate to what humans may find difficult

Compositional factors: Semantic factors: Context factors:

Size Location Object Type Scene Type & Depiction Strength Unusual object-scene Pair

“A sail boat on the “Two men standing on beach.” “Girl in the street” “kitchen in house” “A tree in water and a boy with a beard”
ocean.”

Berg et al, “Understanding and predicting importance in images”, CVPR 2012



What is difficult for ML models? GULIE e cormoal &2 hessiana

But what is difficult for ML models & is this related to human perception?
Example: human memorability & image statistics

| Vigilance repeat

-
D A X

+ =

DRV a5
, "n’zﬁ".‘n

5 £ o A N A0 A K > e b = 1A ~
1 sec 1.4 sec | Memory repeat |
time

100

Object Object  Multiscale Object Labeled Labeled Labeled Scene Objects Other
Counts  Areas Object Label Object Object Multiscale Category and Humans
Areas Presences Counts Areas Object Areas Scenes

Top 20 68% 67% 73% 84% 82% 84% 84% 81% 85% 86%
Top 100 68% 68% 73% 79% 79% 82% 82% 78% 82% 84%
Bottom 100 67% 64% 64 % 57% 57% 56% 56% 57 % 55% 47%
Bottom 20 67% 63% 65% 55% 54% 53% 52% 55% 53% 40%
P 0.05 0.05 0.20 0.43 0.44 0.47 0.48 0.37 0.50 0.75

Table 1. Comparison of predicted versus measured memorabilities.

Isola et al, “What makes an image memorable”, CVPR 2011
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What is difficult for ML models? GUILLE e commeal &2 hessiana

But what is difficult for ML models & is this related to human perception?
Example: human response times

Collecting response times. We collected ground-truth dif-
ficulty annotations by human evaluators using the follow-
ing protocol: (1) we ask each annotator a question of the
type “Is there an {object class} in the next image?”’, where
{object class} is one of the 20 classes included in the PAS-
CAL VOC 2012; (1) we show the image to the annotator;
(111) we record the time spent by the annotator to answer the
question by “Yes” or “No”. Finally, we use this response
time to estimate the visual search difficulty.

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016
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What is difficult for ML models? GUW/ILIE el & hessiana

But what is difficult for ML models & is this related to human perception?
Example: human response times

Collecting response times. We collected ground-truth dif- Image property Kendall +
ficulty annotations by human evaluators using the follow- : :

ing protocol: (i) we ask each annotator a question of the () number of objects | 0.32
type “Is there an {object class} in the next image?”, where (.1.1.) mean area covered by objects —0.28
{object class} is one of the 20 classes included in the PAS- (Pl) non-centerec.lness 0.29
CAL VOC 2012; (ii) we show the image to the annotator; (iv)  number of different clas.ses 0.33
(111) we record the time spent by the annotator to answer the (V.) number of truncated ObJ eCts 0.22
question by “Yes” or “No”. Finally, we use this response (V.l.) number of o.ccluded ()l.)JeCtS 0.26
time to estimate the visual search difficulty. (vi)  number of difficult objects 0.20

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016



What is difficult for ML models? GUILLE e commeal &2 hessiana

Human difficulty & model difficulty are not necessarily the same
Various factors come into play in ML models: a regression example

| e W F Model MSE | Kendall 7

| =5 i Random scores 0.458 0.002

| B N Image area - 0.052

: : : Image file size - 0.106
Objectness [1, 2] - 0.238

Edge strengths [13] - 0.240

o Number of segments [16] - 0.271
s Combination with v-SVR 0.264 0.299
VGG-f + KRR 0.259 0.345

@ VGG-f + v-SVR 0.236 0.440
g VGG-f + pyramid + v-SVR 0.234 0.458
o VGG-f + pyramid + flip + v-SVR 0.233 0.459
? VGG-vd + v-SVR 0.235 0.442
8 VGG-vd + pyramid + v-SVR 0.232 0.467
£ VGG-vd + pyramid + flip + v-SVR 0.231 0.468
% VGG-f + VGG-vd + pyramid + flip + »-SVR | 0.231 0.472

lonescu et al, “How hard can it be? Estimating the difficulty of visual search in an image”, CVPR 2016




What is difficult for ML models? GUILLE e commeal &2 hessiana

Various factors come into play in ML models
Example: shallow embeddable examples seem to be learned first
A deep network in comparison to a SVM (random forest also in the paper)

Ratlo of CNN Accuracies on 1.5 ~ : ] | Ratio of ResNet101 Accuracies on
SVM-correct to SVM-wrona subsets 1 Ratio of DenseNetl121 accuracies on .
J (|l SVM-correct to SVM-wrong subsets SVM-correct to SVM-wrong subsets

1.4
1.31
1.2
1.1

1.0

0 100 200 300 400 500 600 0 250 500 750 1000 1250 1500 1750 2000 0 20 40 60 80 100

Ratio of Accuracies R* plotted against ¢ with M being a Support Vector Machine.

Mangalam & Prabhu, “Do deep neural networks learn shallow learnable examples first?”, ICML 2019
workshop on identifying and understanding deep learning phenomena



What is difficult for ML models? GU/ILLE «cnmaal & hessiana

Various factors come into play in ML models
Example: invariance to certain discriminative factors (e.g. frequencies) may exist

. —_‘_‘__//

| 1
Low Frequency High Low Frequency High

(a) MNIST (Test: 99.4%) (c) ImageNet (Test: 76.2%)

£ £ 10 A
20 20 - 20
© . - (T
= e =
3 T T 0 R e ]
|

|
Low Frequency High Low Frequency High

(d) MNIST flipped (Test: 99.3%) (f) ImageNet flipped (Test: 68.1%)

Margin

Ortiz-Jimenéz et al, “Hold me tight! Influence of discriminative features on deep network boundaries”, NeurlPS 2020
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Beyond curriculum learning GWILIE o oAl &2 hessian.A

Assessing difficulty of data instances is interesting beyond curriculum learning
Example: estimating the difficulty with respect to annotation cost

Contains flowers Flower -
Most regions are understood, This looks expensive to .
but this region is unclear. annotate, and it does not > Label the object(s)

effort
info
effort
info

seem informative. in this region

S |0 5[0
5| | 5l |E
This looks expensive to This looks easy to
annotate, but it seems annotate, but its content / -
. very informative. is already understood. Completely segment
Dog Contains book and label this i1mage.
(a) Labeled (and partially Ila- (b) Unlabeled and partially labeled examples to survey (c) Actively chosen queries sent to anno-
beled) examples to build models tators

Vijayanarasimhan & Grauman, “What's It Going to Cost You?: Predicting Effort vs. Informativeness for Multi-Label Image Annotations”, CVPR 2009
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Pacing: how to schedule the training



Scheduling training

QO O

O O O
O O

°Q
%

small & easy
subset

Q1

|

© % 3%

Q
Q >) O Model
O O

v RS

Data
larger & harder whole training
| ~subset- | - dataset -
ﬁ_,:
Q¢ Qr =P Curriculum

Training process

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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If we want to define the
curriculum up-front, according
to prior knowledge, then:

When do we introduce more
difficult examples?



Pacing fu nctions @W&&@ ConﬁnualAl &” hessian.Al

Various options & heuristics are conceivable

Algorithm 1 One-Pass Curriculum

1: procedure OP-CURRICULUM(M,D, C)

2: D' = sort(D, C)

3:  {D!,D? ..., DF} =D where C(d,) < C(dy) dg €
D' ,d, € DV, Vi < j

4 for s=1...k do

5 while not converged for p epochs do
6: train(M, D?®)

7 end while

8 end for

9: end procedure

Algorithm from Cirik et al, “Visualizing and understanding curriculum learning for long
short-term memory networks”, arXiv, 2016
Based on the procedure described in Bengio et al, “Curriculum Learning”, ICML 2009



Pacing fu nctions @W&&@ ConﬁnualAl &” hessian.Al

Various options & heuristics are conceivable

Algorithm 1 One-Pass Curriculum Algorithm 2 Baby Steps Curriculum
1: procedure OP-CURRICULUM(M,D, C) : procedure BS-CURRICULUM(M,D, ()
2: D' =sort(D, C) 2. D =sort(D, C) ,
3 | {Dl,Dz,v...,Dk} — D/ where C(da) < C(db) da c 3. Dz {Zi) ,DD;\VJD } — D’ where C(da) < C(db) da c
Dt,db 6D39VZ<] 4- btl;"ain _,®Z<]
4 for s=1.k do 5. for s=1.k d
5 while not converged for p epochs do 6 o Bt:ai;{ _ D(:mi” U DS
6: tralr}(M , D7) 7 while not converged for p epochs do
7: end while ]: trajn(M Dtrain)
8 end for 9: end while
9: end procedure 10: end for

Algorithm from Cirik et al, “Visualizing and understanding curriculum learning for long 11: end procedure

short-term memory networks”, arXiv, 2016

Based on the procedure described in Bengio et al, “Curriculum Learning”, ICML 2009 Algorithm from Cirik et al, “Visualizing and understanding curriculum learning for long
short-term memory networks”, arXiv, 2016

Based on the procedure described in Spitkovsky et al, “From baby steps to leapfrogs:
how less is more in unsupervised dependency parsing”, NAACL-HLT, 2010
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Various options & heuristics are conceivable

LE g p— Fixed exponential pacing E
---- Varied exponential pacing |
© 08 .. Single ste :
-oc—U' g P :
0
uc—) 0.6 Starting
- percent
O
= 04 /
AL A I T eeneceeseee s ® T eiieasenenenenennat
L 0.2
0.0 |
0 500 1000
lteration

1500

H;., = H; - Increase

Competence

H; —data size at time t

2000 2500

Hacohen & Weinshall, “On the power of curriculum learning in deep networks”, ICML 2019

1.0 —
0.8 1
0.6
—— Clinear
0.4 - — GCsqrt
—— Croot—3
— Croot—5
0.2 — Croot—10
0.0 | 1 1 | I |
0 200 400 600 800 1000
1Time

Platanios et al, “Competence based curriculum learning
for neural machine translation”, NAACL-HLT 2019
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Pacing fu nctions @W&&@ ConﬁnualAl &” hessian.Al

It’s not straightforward to choose, especially due to model/task dependency

IWSLT16 : Fr — En WMT16 : En — De
RNN _ Transformer RNN Transformer
36.00 30 30 {-30.00 |
35 4 35 - o
32.00 | | 34.00 26.50 , 28.00
2 30 31.00 30 - R 5 -
o0
25 - 25 - 20 -
20 I T T 20 T T I 15 T T 15 T T T
0 10000 20000 0 50000 100000 0 100000 0 100000 200000
Step Step Step Step
— Plain SL Linear SL Sgrt —— SR Linear SR Sqrt

Platanios et al, “Competence based curriculum learning for neural machine translation”, NAACL-HIT 2019
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Moving away from a pre-defined curriculum



Beyond pre-defined curricula

Predefined CL

ﬁ (Sec.4.1,4.2) O

CL Methods
(Sec.4)

Self-paced Learning

(Sec.4.3.1)
Transfer Teacher
(Sec.4.3.2)
Automatic CL
(Sec.4.3)
RL Teacher

(Sec.4.3.3) \

Other Automatic CL
(Sec.4.3.4)

= @
Training
sf' _____ If model converges EPocht
Difficulty Training . Model
Measurer Sorted Scheduler Sample | Trainer
data batch @t
Curriculum Design
S
Training | (b)
set - e
l Training loss @t as difficulty Epocht
| I
Difficulty Training . Model
Measurer Sorted Scheduler Sample ' Trainer
data batch @t
Curriculum Design
S/
Training External () |
set l dataset
| .
\ V It model converges 5Pocht
+ H F
Difficulty Training ., Model
Measurer Sorted Scheduler Sample | Trainer
data batCh @t .
Curriculum Design «
urriculu ig Y,
Training (d)
set
Reinforcement Learning Epocht
l | Student feedback @tl
Difficulty Training . Model
Measurer Sorted Scheduler Sample | Trainer
data batch @t
Curriculum Design J

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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Instead of defining the curriculum ourselves, we could use a pre-trained teacher
model (based on a different related dataset) based difficulty measure

Training External (c)
set dataset

I -
[ 5 W It model converges =Pocht
. l |

Difficulty _ Training ., Model
Measurer Sorted Scheduler Sample Trainer
data batch @t

Curriculum Design

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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Transfer-teacher curricula GUWILLE o coninsal &2 hessionar (2 ST

Instead of defining the curriculum ourselves, we could use a pre-trained teacher
model (based on a different related dataset) based difficulty measure

—+— Vanilla

055 =+ Curriculum . S—— W:‘;W
N —4— Anti Curriculum | _ovﬁf—-""".'—
e Vi > —— Random - -’
Training External (c) & 0.50 5
— /a
set | dataset 3 L~
| Pretrain Epoch 2 0.45 /
i If model converges EPOCNT < /
. . ! 2040 0.57
Difficulty _ Training _ Model o 0.56
Measurer Sorted Scheduler Sample ' Trainer 0 35 0.55 . .
data batch @t

Curriculum Design J 0 500 1000 1500 2000 2500 3000 3500

Batch Number

Figure 2. Results in case 1, with Inception-based transfer scoring
function and fixed exponential pacing function.

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021 Hacohen & Weinshall, “On the power of curriculum learning in deep networks”, ICML 2019



From pre-defined to self-paced GU/ILIE = comanl & hessiana

Using a teacher is still a form of pre-defined curriculum however, what if we want
to have an adaptive measure of difficulty, based on our current model?

Moving away from a pre-defined curriculum towards model “"competence”

Training (b)
set - : .
Training loss @t as difficulty Epocht
¥ |
Difficulty _ Training . Model
Measurer Sorted Scheduler Sample ' Trainer
data batch @t
Curriculum Design

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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From pre-defined to self-paced GU/ILIE = comanl & hessiana

Often this is called self-paced learning

We now rely on the model’s current hypothesis at each point in time to assign difficulty
to the training instances, rather than ranking according to the target hypothesis.

Training ()
set - .
Training loss @t as difficulty Epocht
¥ |
Difficulty _ Training . Model
Measurer Sorted Scheduler Sample = Trainer
data batch @t |
Curriculum Design

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021
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Somewhat related to what we've already seen

—4— Vanilla
—t+— Self-Taught
0.5 —— self-Paced

Self-paced learning:
Measure the difficulty of an instance
according to current loss/predictions etc.
(related to the ideas in active learning)

Top-1 Accuracy
o
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i

- ) 0 500 1000 1500 2000 2500 3000 3500

Train a model fuIIy, measure each instance Hacohen & Weinshall, “On the power of curriculum learning in deep networks”, ICML 2019
according to final model, assign difficulty

score and start over with curriculum -> repeat

(related to the ideas in boosting)
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Does intrinsic ordering/pacing exist?

If we can use the loss of a model as a measure of difficulty,
does this perhaps mean that models “intrinsically order”
examples during regular training to some degree as well?
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An experiment: let’s train multiple models & check how similar representations are

Why is this interesting?
Recall that we typically use mini-batches + stochastic gradient descent,
where data is shuffled differently in every “epoch”
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An experiment: let’s train multiple models & check how similar representations are

Why is this interesting?
Recall that we typically use mini-batches + stochastic gradient descent,
where data is shuffled differently in every “epoch”
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Li & Yosinski et al, “Convergent learning: do different neural networks learn the same representations”, ICLR 2016
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Intrinsic ordering & pacing?

If we try to do a bi-partite matching of the
representations in each neural network
layer of different networks, there seem to
exist strong correlations, especially In
early, “generic” features

GWILILE oo continuaAl - &2 hessian.Al
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convolutional layers

Li & Yosinski et al, “Convergent learning: do different neural
networks learn the same representations”, ICLR 2016




Intrinsic ordering & pacing?

A step further: let’s train multiple models & check how much they agree on instances

Training: mini-batch SGD - dataset in each epoch is shuffled differently for each model

(

—
e
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4 Dataset ) ﬁ-"redictions omeodeR correct ﬁ?redictions omeodeh correct ﬁ?redictions omeodeR correct
m; m, m, agreed mq m, m, agreed mq m, m, agreed
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B¥B o W¥WB o VbV :
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Pliushch et al, “When Deep Classifiers Agree: Analyzing correlations between learning order and image statistics”, arXiv preprint 2021
As a reproduction & extension to the earlier Hacohen et al, “Let’s agree to agree: neural networks share classification order on on real datasets”, ICML 2020
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Different neural networks seem to classify the same instances correctly at similar
points in training: they “agree to agree”

Same model Different neural networks
80 30
- .
5 60 5 60
ut v
m L
o 40 $ 40
20 — Agreement (correct) 20 S Abreement (chrrech)
| T Accuracy | —— Accuracy
() | A, A S S N Lower bound 0| Lt I e Lower bound
0 6 12 18 24 30 36 42 48 54 0 6 12 18 24 30 36 42 48 54

Epochs Epochs

Pliushch et al, “When Deep Classifiers Agree: Analyzing correlations between learning order and image statistics”, arXiv preprint 2021
As a reproduction & extension to the earlier Hacohen et al, “Let’s agree to agree: neural networks share classification order on on real datasets”, ICML 2020
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An outlook to closing the circle

Could such inherent agreement be
related to our notions of difficulty?
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Pliushch et al, “When Deep Classifiers Agree: Analyzing correlations between learning order and image statistics”, arXiv preprint 2021
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Pliushch et al, “When Deep Classifiers Agree: Analyzing correlations between learning order and image statistics”, arXiv preprint 2021
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As always: a disclaimer
there’s much we don’t yet know

And a final note =)



It’s about set-up & evaluation

Training C Learner )

T, T,

Thi1

Transfer Learning

Tn

Meta-Learning

( Meta-Leamner )

Continual Learning
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Multi-task Learning

T
T 7@ T (M)
1 I
Expert )
Annotator

Active Learning

Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021

Training
Testing
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Model update / Finetune
Annotation path in AL
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Sequence (seq.) of tasks
Training / Testing data
Unlabeled training data

Learner at step i in seq.
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Specific learner for task j

Curriculum Learning
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