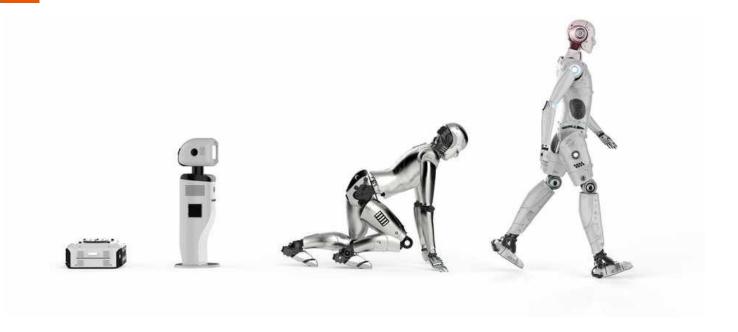
Task Agnostic Continual RL

Massimo Caccia, Jonas Mueller, Taesup Kim, Laurent Charlin, Rasool Fakoor

TL;DR:

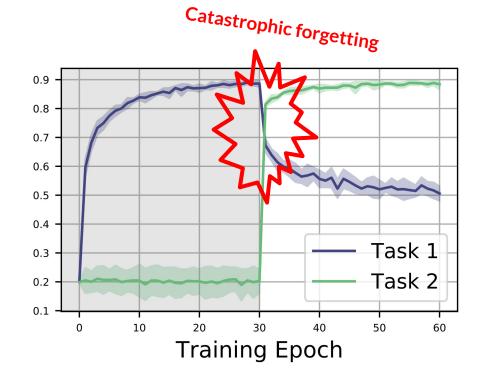


Overview

- Background
 - Continual Learning
 - Reinforcement Learning
- Task Agnostic Continual RL
 - Problem Statement
 - Soft upper Bounds: Task-awareness, Multi-task learning
- Methods
 - Backbone RL algo (SAC)
 - Baselines
- Empirical Findings
 - Benchmark
 - Task-agnostic > Task-Aware
 - Continual learning = multi-task learning
 - Hypothesis testing
- Discussion

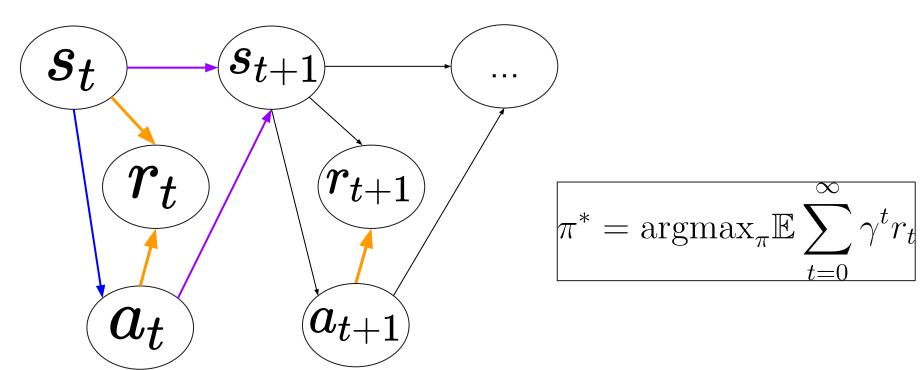
Continual Learning (CL)

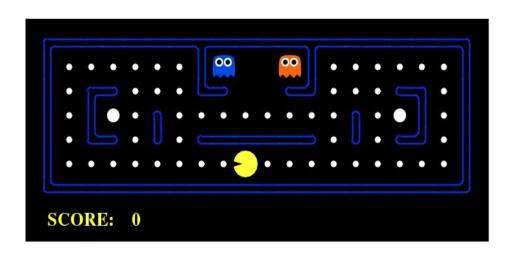
- Accumulating knowledge on non-stationary data distributions
- ML/DL can't learn on changing data distributions (or tasks)

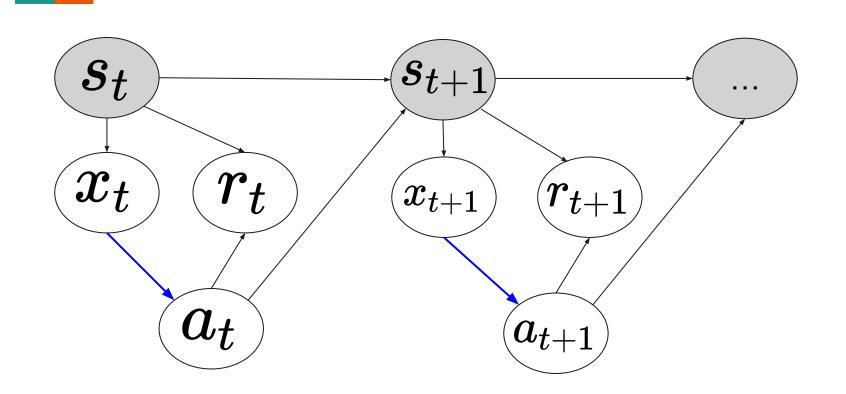


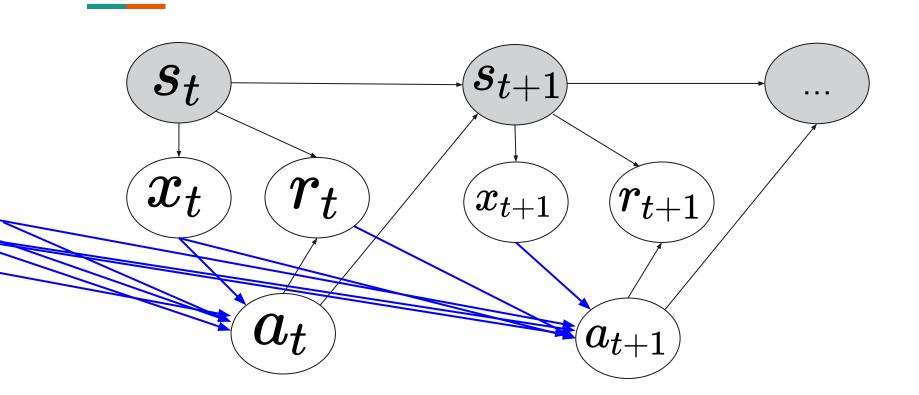
Continual Learning (CL): Why we care

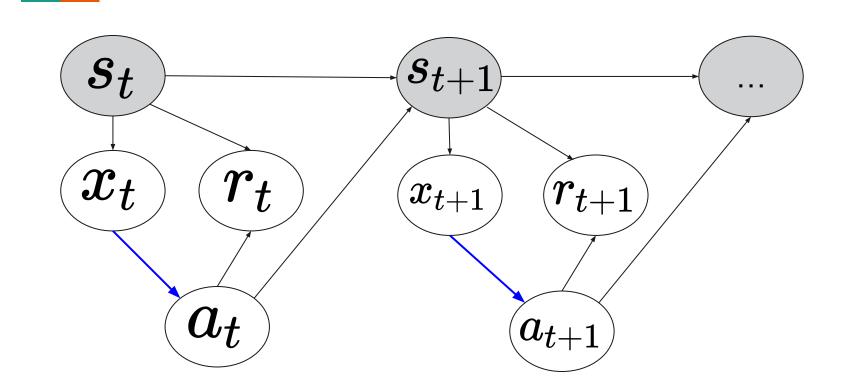
- industry/deployment argument
- Curriculum learning argument
 - Or continually increasing sample/compute efficiency
- Learning autonomously in an open world → AGI

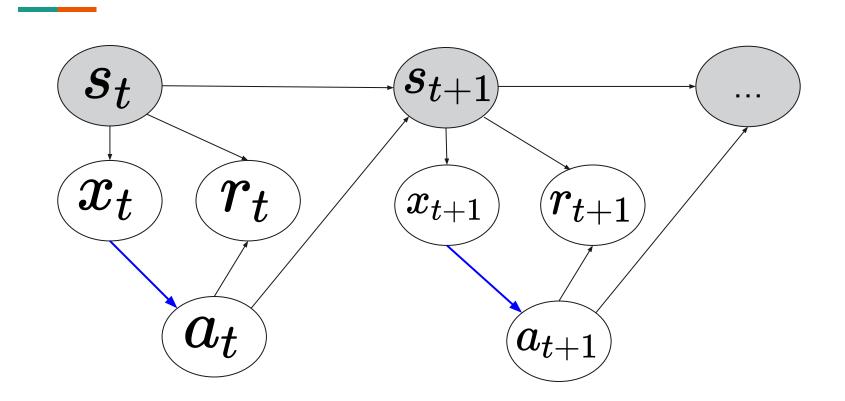




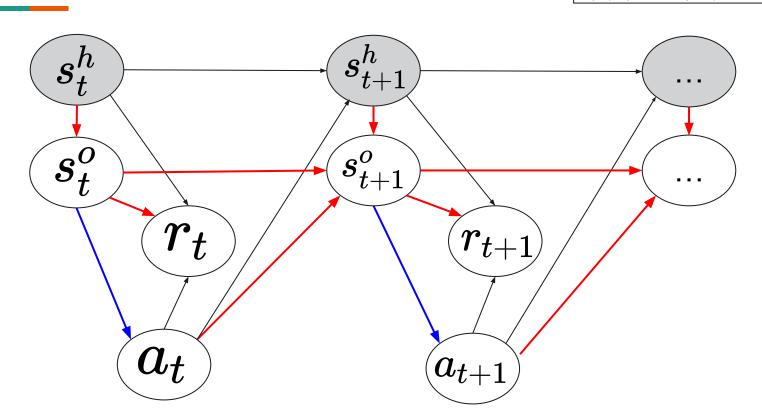


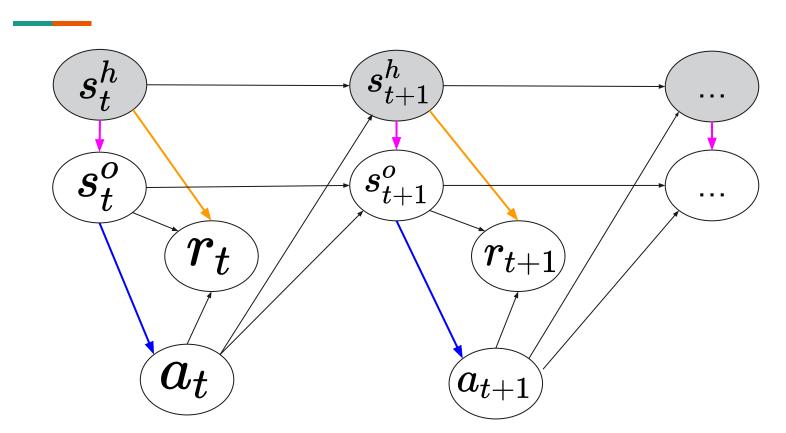


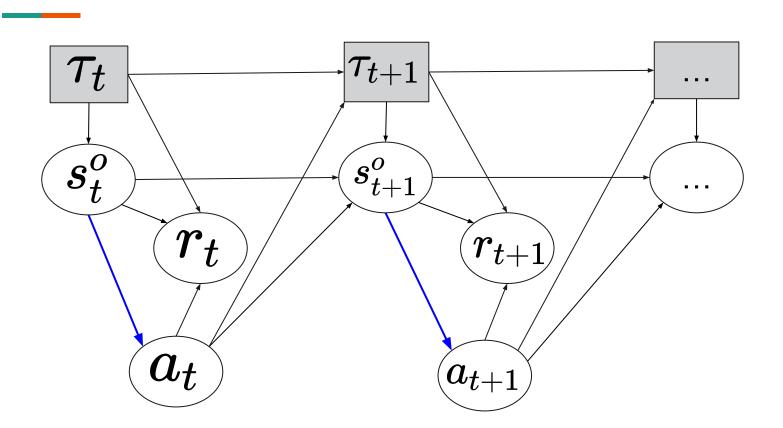


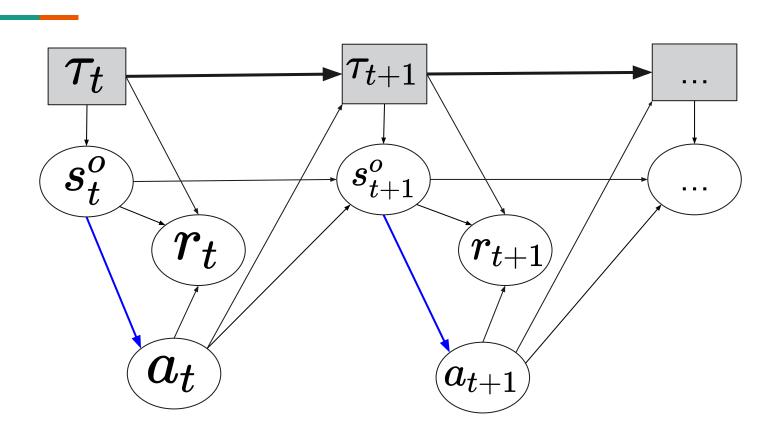


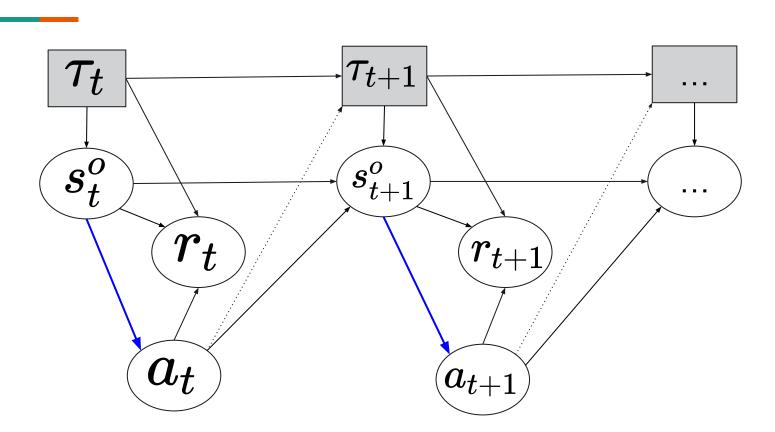
$$\overline{p(s|a) = p(s^o|s^h,a)p(s^h|a)}$$



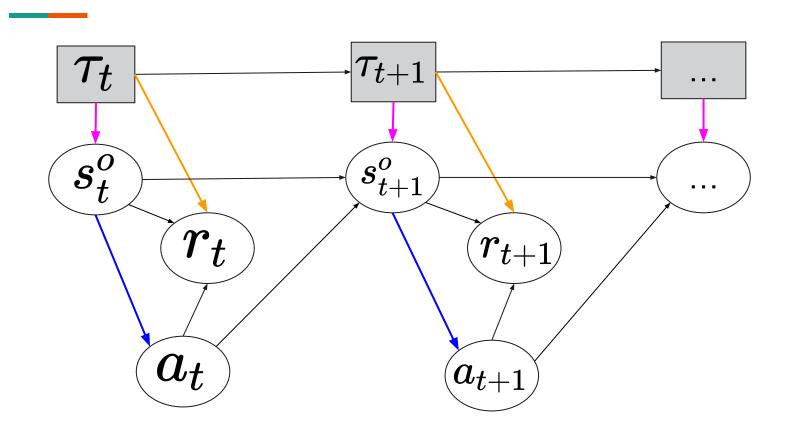




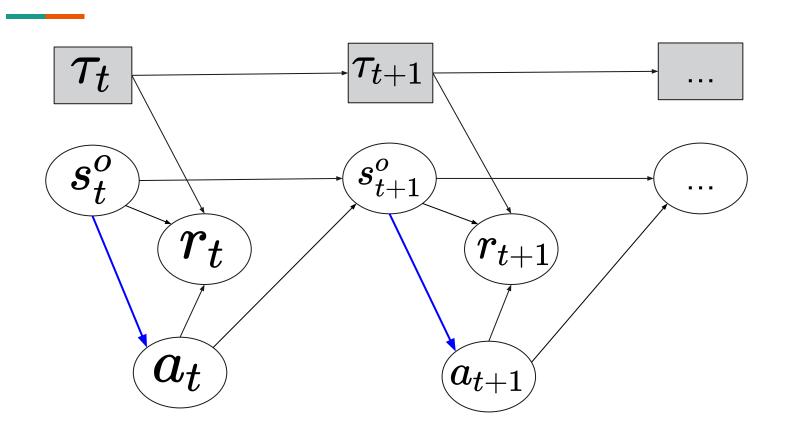




Task-dependant reward function and dynamics



TACRL (in our case)



Problem

POMDP

- + locally-stationary hidden states
- + Passive non-stationarity
- + single hidden state (task)

Task-Agnostic Continual RL

Task-Awareness soft upper Bound

- Provide task label to agent:
 - POMDP → MDP

multi-task soft upper Bound

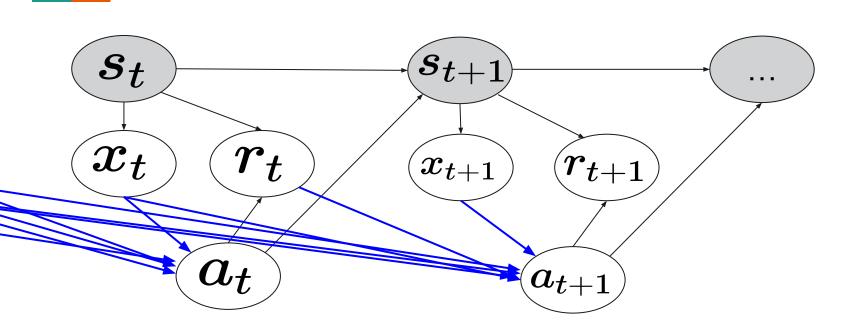
- Train on a stationary data distribution
 - Catastrophic Forgetting disappears

Related settings

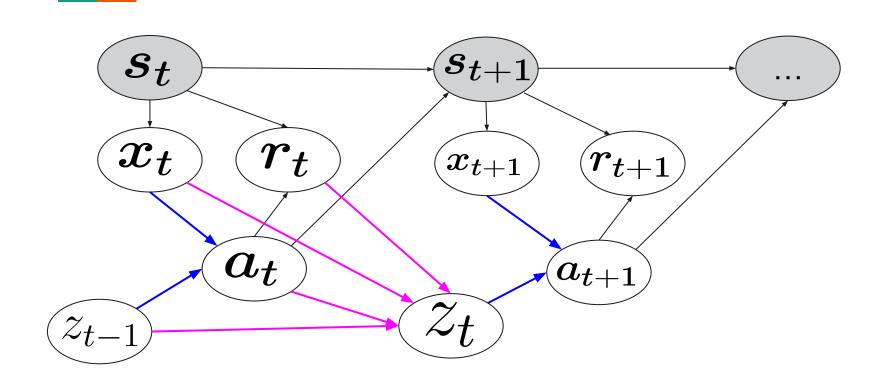
	T	π	Objective	Evaluation
MDP [51]	$p(s_{t+1} s_t,a_t)$	$\pi(a_t s_t)$	$rac{\mathbb{E}ig[\sum_{t=0}^{\infty} \gamma^t r_tig]}{2}$	-
POMDP [24]	$p(s_{t+1}^h, s_{t+1}^o s_t^h, s_t^o, a_t)$	$\pi(a_t s_{1:t}^o,a_{1:t-1},r_{1:t-1})$	$\mathbb{E}_{s^h} \Big[\mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^t r_t \Big] s^h \Big]$	-
HM-MDP [9]	$p(s_{t+1}^{o} s_{t+1}^{h},s_{t}^{o},a_{t})p(s_{t+1}^{h} s_{t}^{h})$	$\pi(a_t s_{1:t}^o,a_{1:t-1},r_{1:t-1})$	$\mathbb{E}_{sh} \Big[\mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^t r_t \Big] s^h \Big]$	-
Task-agnostic CRL	$p(s_{t+1}^{o} s_{t+1}^{h},s_{t}^{o},a_{t})p(s_{t+1}^{h} s_{t}^{h})$	$\pi(a_t s_{1:t}^o,a_{1:t-1},r_{1:t-1})$	$\mathbb{E}_{s^h} \Big[\mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^t r_t \Big] s^h \Big]$	$\mathop{\mathbb{E}}_{\widetilde{s}^h}\!\left[\mathop{\mathbb{E}}_{\pi}\!\left[\sum_{t=0}^{\infty}\gamma^t r_t ight]\!\left s^h ight]$
Task-Aware CRL	$p(s_{t+1}^{o} s_{t+1}^{h},s_{t}^{o},a_{t})p(s_{t+1}^{h} s_{t}^{h})$	$\pi(a_t s_t^h,s_t^o)$	$\mathbb{E}_{sh} \Big[\mathbb{E} \Big[\sum_{t=0}^{\infty} \gamma^t r_t \Big] s^h \Big]$	$\mathbb{E}_{\widetilde{s}h} \Big[\mathbb{E}_{\pi} ig[\sum_{t=0}^{\infty} \gamma^t r_t ig] s^h \Big]$
Multi-task RL	$p(s_{t+1}^{o} s_{t+1}^{h},s_{t}^{o},a_{t})p(s_{t+1}^{h})$	$\pi(a_t s_t^h,s_t^o)$	$\mathbb{E}_{\tilde{s}^h} \Big[\mathbb{E}_{\pi} \Big[\sum_{t=0}^{\infty} \gamma^t r_t \Big] s^h \Big]$	-

Table 1: Summarizing table of the settings relevant to TACRL. For readability purposes, \tilde{s}^h denotes the stationary distribution of s^h . The Evaluation column if left blank when it is equivalent to the Objective one.

Handling partial observability



Handling partial observability w/ a working memory



Replay-based Recurrent RL (3RL)

- Trick to handle partial observability → Working Memory (RNN)

- Trick to handle forgetting → Experience Replay
- RL algo + RNN + Experience Replay = 3RL

Other baselines

- Strategies
 - Fine Tuning
 - Experience Replay
 - Multi-task
- Task-Aware Modeling:
 - += Multi-head (MH)
 - +=TaskID

SAC

Q-learning:

$$Q(s, a)$$
 $\pi(s) = \operatorname{argmax}_a Q(s, a)$

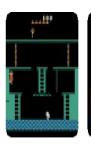
Doesn't scale!

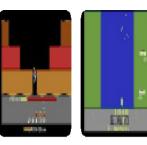
Deep Q-learning (DQN)
$$Q_{\theta}(s,a)$$
 $\pi(s) = \operatorname{argmax}_a Q_{\theta}(s,a)$

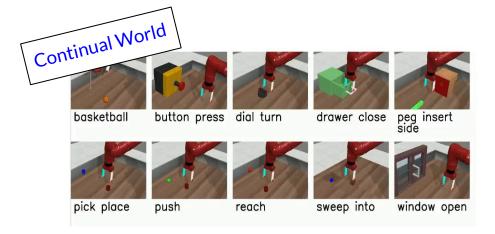
What if my actions are continuous??

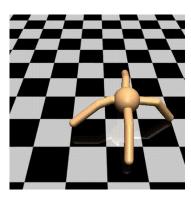
Soft-Actor critic (SAC)
$$\pi_{\phi}(s) pprox \operatorname{argmax}_{\phi} Q_{\theta}(s, \pi_{\phi}(s))$$

Benchmark

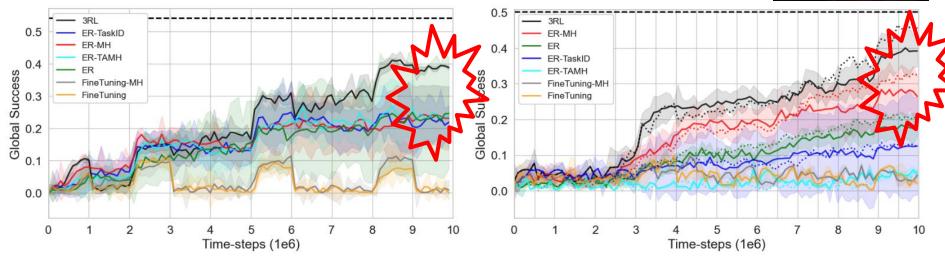




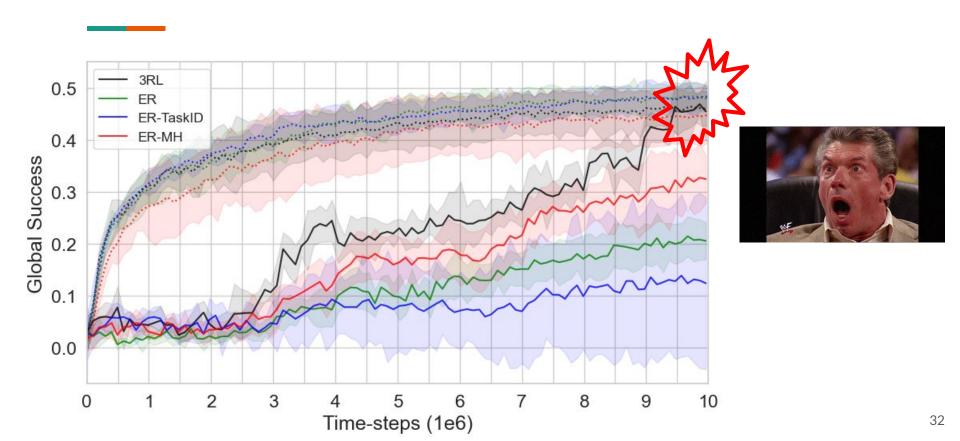




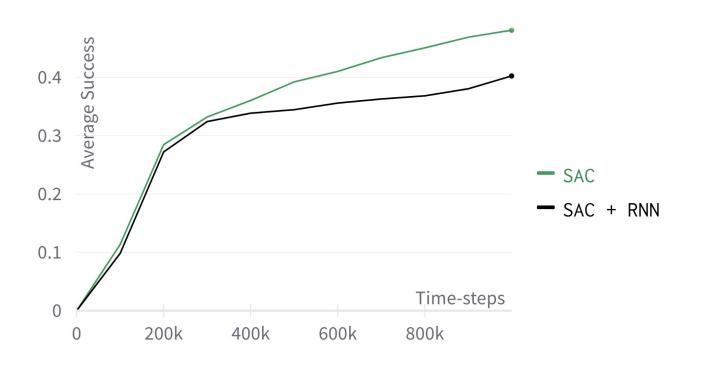
Task-agnostic > Task-Aware



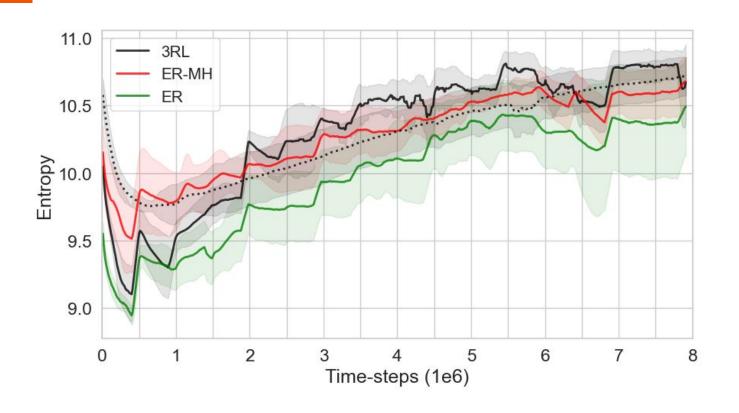
CL = MTL



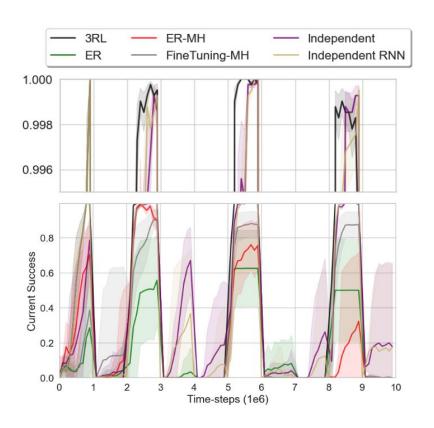
Hypothesis #1: rnn individually improves single-task performance



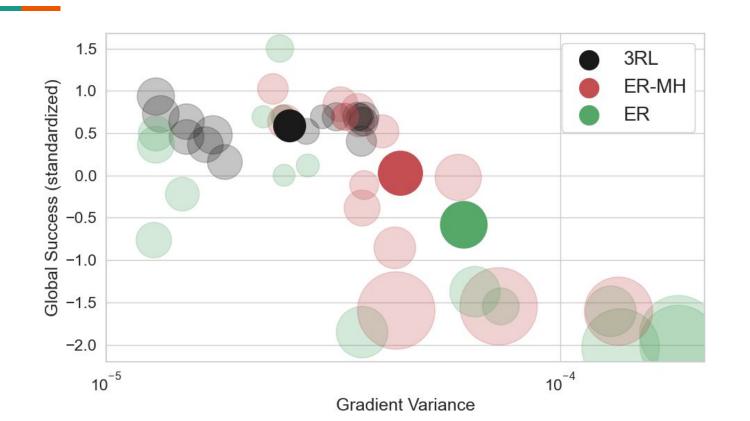
Hypothesis #2: increases parameter stability



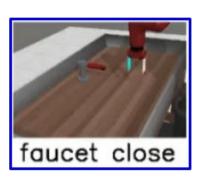
Hypothesis #3: rnn correctly places the new tasks in the context for previous ones

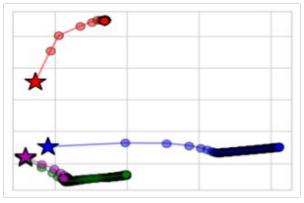


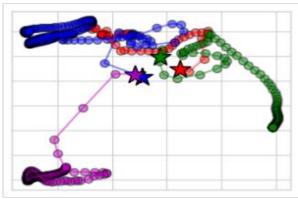
Hypothesis #3: rnn correctly places the new tasks in the context for previous ones

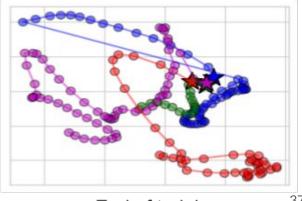


Qualitative analysis of the representations









. . .

Before training

After one task

End of training

Discussion

- Implications for CL research
- CSL vs CRL