Open World Lifelong Learning

A Continual Machine Learning Course

Teacher
Dr. Martin Mundt,

hessian.Al-DEPTH junior research group leader on Open World Lifelong Learning (OWLL)
& researcher in the Artificial Intelligence and Machine Learning (AIML) group at TU Darmstadt

Time Course Homepage
Every Tuesday 17:30 - 19:00 CEST http://owll-lab.com/teaching/cl_lecture
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Week 12: Course wrap-up & Frontiers
+ Q&A session at the end
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We have started with the question
What do you think: what is machine learning?
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Can we just iterate? WL
Data is fed as input and We’ve qU|Ck|y |earned
the algorithm configured Publish the prepared
: : : : . gy
Prep-armg data Is 2 with the required experiment as a web that |t S more than
Identify the problem to crucial step and involves parameters. A percent of service, so applications
building workflows to the data can be utilized to ' T - 79
ble solvbe_d i.nd create a clean, match and blend train the model. can use the model traln Val teSt
clear objective. the data. ‘
Define Collect Prepare Select Train Test Integrate
objective Data Data Algorithm Model Model Model
Collect data from Depending on the The remaining data is utilized to test
hospitals, health problem to be solved and the model for accuracy. Depending
Insurance companies, the type of data, an on the results, improvements can be
social service agencies, appropriate algorithm performed in the "Train model”
police and fire dept. will be chosen. and/or “Select Algorithm" phases,
iteratively.

Figure from https://www.congrelate.com/get-workflow-machine-learning-images/
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Data: amount, redundancy vs. diversity,
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Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022



What we’ve talked about
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“‘How transferable are features in deep neural networks”,
Yosinski et al, NeurIlPS 2014
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Wang et al, “A Survey on Curriculum Learning”, TPAMI 2021

Paradigms for Continual Learning
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Hadsell et al, “Embracing Change: Continual Learning in Deep
Neural Networks”, Trends in Cognitive Sciences 24:12, 2020
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Closed/Open World
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Closed Set Testing

Unknown Categories

Open Set Testing
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Figure from CVPR16 “Statistical Methods for Open Set Recognition” by Scheirer &
Boult, https://www.wjscheirer.com/misc/openset/cvpr2016-open-set-part3.pdf
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Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and
the Bridge to Active and Open World Learning”, Mundt et al 2020
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TACRL as a POMDP special case
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From guest lecture, week 11, task-agnostic reinforcement learning

cyber physical systems

transfer
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[0 OSAKA (Caccia et al., 2020) [7] FedWelT (Yoon etal., 2021)  [] A-GEM (Chaudhry et al., 2019) SRLLLLLURy  dom. spec. Al eng.

|| VCL (Nguyenetal., 2018) [ | OCDVAE (Mundt et al., 2020b;a) Figure 3: Conceptualization of Al engineering

Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment Bosch et al, “Engineering Al Systems: A Research Agenda”, in Artificial
Compass to Promote Research Transparency and Comparability”, ICLR 2022 Intelligence Paradigms for Smart Cyber-Physical Systems
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We’ve already encountered many frontiers

Each “individual paradigm” has its frontiers,
even before drawing connections

A central question seems to be a trade-off?
The value of the “whole” & the utility of a “niche”



Dependencies & synergies
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Mundt et al, “CLEVA-Compass: A Continual Learning Evaluation Assessment
Compass to Promote Research Transparency and Comparability”, ICLR 2022
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We should now be more familiar
with the left picture

And hopefully also have some
understanding of the
dependencies, the complex
interplay & existing synergies



Closed vs. open worlds
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It’s likely we will need to study both: specifics + overall systems!

But when do we study what? And when are our assumptions fair?

Face Open Set

Multi-class Classification ) , Detection "
Verification Recognition

s
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testing samples identity, everything else classes, many
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Scheirer et al, “Towards Open Set Recognition”, TPAMI 2012
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Bendale & Boult ,“Towards Open World Recognition”, CVPR 2015
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and performance measure P),
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number of examples with
supervised information for the
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of target T feasible by combining
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Settles (2009): “The key hypothesis
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“optimal experimental design” in
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Pan & Yang (2010): “A domain D
consists of two components: a
feature space A’ and a marginal
probability distribution P(X),
where X = {zy,...,z,} € X.
Given a source domain Ds and
learning task Ts, a target domain
D and learning task Tr, transfer
learning aims to help improve
learning of the target predictive
function fr() in Dy using the
knowledge in Dg and Ts, where
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Pan & Yang (2010): “Given a
source domain Ds and a
corresponding learning task Ts, a
target domain Dy and a
corresponding learning task T,
transductive transfer learning aims
to improve the learning of the target
prediction function fr() in Dr
using the knowledge in Ds and Ts,
where Ds # Dr and Ts = Tr.”
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Early definition: lifelong ML

Provocatively asking:
Is it even possible/desirable to strive for a unified definition of
lifelong machine learning?

Definition - Lifelong Machine Learning - Thrun 1996:
“The system has performed N tasks. When faced with the (N+1)th task,
it uses the knowledge gained from the N tasks to help the (N+1)th task.”

“Is Learning The n-th Thing Any Easier Than Learning the First?” (NeurlPS 1996) & “Explanation
based Neural Network Learning A Lifelong Learning Approach”, Springer US, 1996
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Later definition: lifelong ML

Definition - Lifelong Machine Learning - Chen & Liu 2017
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner
performed a sequence of N learning tasks, ,,9 ,, ..., 7 , - These tasks can be of the same

type or different types and from the same domain or different domains. When faced with

the (N+1)th task 7., (which is called the new or current task) with its data D, ,, the

learner can leverage past knowledge in the knowledge base (KB) to help learn 7, ,.
The objective of LML is usually to optimize the performance on the new task 7, ,, but it

can optimize any task by treating the rest of the tasks as previous tasks. KB maintains the
knowledge learned and accumulated from learning the previous task. After the completion

of learning 7 ., KB Is updated with the knowledge (e.g. intermediate as well as the final

results) gained from learning 7. ,. The updating can involve inconsistency checking,

reasoning, and meta-mining of additional higher-level knowledge.”

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017
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Later definition: lifelong ML

Definition - Lifelong Machine Learning - Chen & Liu 2017
“Lifelong Machine Learning is a continuous learning process. At any time point, the learner

performed. = 7 7 Thaca tacke can ha of the same

L
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type C May contain some parts we haven’t discussed: ed with
the ( reasoning, meta-mining of higher-level knowledge ... . the
learne
The o Does not explicitly contain many things we have learned about:
active data queries, difficulty/curricula, dynamic model
architectures, open worlds, soft/hardware, memory/compute

-
1,butit

can of fains the

Knowi constraints ... pletion
of lea | the final
results) gained from learning 7 ,,.,. The updating can involve inconsistency checking,

reasoning, and meta-mining of additional higher-level knowledge.”

“Lifelong Machine Learning”, Chen & Liu, Morgan Claypool, 2017
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Much still to be investigated & connected, even beyond
the topics we have explored in the course

In retrospect: is data & task heterogeneity at the center?
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Federated learning: different data bases & local “client”
models, trained in parallel/with synchronization steps

(Some) factors to consider:

SEL\ELA @ Sending encrypted gradients
| | 2 _Secure aggregation e #clients/models
@ @3 Sending back model updates
Updating models ® #u pd ateS

e Hcommunication rounds

Database B, Database B, Database B,

Figure from “Federated Machine Learning: Concept and Applications”,
Qiang Yang et al., ACM Journal (TIST), 2019
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We can ask ourselves the same questions again:
what if database distributions/tasks are different?

(Some) factors to consider:

Server A @ Sending encrypted gradients
2)  Secure aggregation ® #Cl |e ntS/m Od e I S
@ @3 Sending back model updates
Updating models ® #u pd ateS

e Hcommunication rounds

Database B, Database B, Database B,

Figure from “Federated Machine Learning: Concept and Applications”,
Qiang Yang et al., ACM Journal (TIST), 2019
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» Horizontally partitioned federated learning (HFL): data distributed in different silos contain
the same feature space and different samples

« \Vertically partitioned federated learning (VFL): data distributed in different silos
contain different feature spaces and the same samples.

« Federated transfer learning (F TL): data distributed in different silos contain different feature
spaces and different samples.

S=—————

Federated
Transfer Learning

' |
"
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‘ ' o | .
Data from A : g | Data from A Data from A
o NN - — — — === — —— ——
1S3 : Vertical Federated Learni '
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= 1o = ! = | =
g N D! P S — — — — — — — — — — — — — =
=4 1
A l:ct) § . . A A
: 3 | Data from B Data from B Data from B
| B!
i
' |
'
|
'
L
Features Features Features

Figure from “Federated Machine Learning: Concept and Applications”,
Qiang Yang et al., ACM Journal (TIST), 2019
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Samples

Horizontally partitioned federated learning (HFL): data distributed in different silos contain
the same feature space and different samples

Vertically partitioned federated learning (VFL): data distributed in different silos
contain different feature spaces and the same samples.

Federated transfer learning (FTL): data distributed in different silos contain different feature
spaces and different samples.

==—————§

Federated
Iransfer Learning

Data from / Data from A -

Data from B

Fecatures Features Features

Figure from “Federated Machine Learning: Concept and Applications”,
Qiang Yang et al., ACM Journal (TIST), 2019
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We can easily think of scenarios where federated + continual go hand in hand

Hospital A Hospital B Hospital C
Public Health System g7k &
(Central Server) &

r — e — G
|
| 0
F— Influenza
0.7 ‘Mﬂ"f
Human
RhinoVirus

T

ey

| . : COVID-? (30') l
Selectively Transferring  Indirect Experiences

Figure from “Federated Continual Learning with Weighted Inter-client Transfer”, Yoon et al., ICML 2022
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Federated continual learning

And then we can start asking ourselves all the same (& more) questions again =)

( -
Assistant Client
Labels Target Client on SVHN
\
Positive Knowledge Transfer 2
< [ 1— " \ _— A
& | Target Client £ g A
S <
s D | SVHN ‘ 9
X | S 80
\ - ) < |
Knowledge Interference 781 -A- No Transfer (CL)
i l -~ Positive Transfer (FCL)
- ~£3- Negative Transfer (FCL)
%% 6t — ]
(a) Dataset (b) Non—-IID Tasks (¢) Mixture of Multiple Datasets | \.CFaR-10 Disruptive Client J 12345678910

Epoch

Figure from “Federated Continual Learning with Weighted Inter-client Transfer”, Yoon et al., ICML 2022
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And we can start applying what we've learned with respect to modular architectures etc.

Central Server

LM

Client Czl

oo e

r-( lient C1 5 m(t)

2 I -
l s (t) :
. | B2 |
|
|

e h@-@» i@l@-ﬁ

(a) Communication of General Knowledge (b) Communication of Task-adaptive Knowledge

Figure from “Federated Continual Learning with Weighted Inter-client Transfer”, Yoon et al., ICML 2022
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Perhaps now with as well, such as !

Client communication:
* Communicates a sparsified/masked base parameter B t * m_t & task-adaptive A t

* Naive federated learning communicates C (clients) * theta (params) * R (rounds)
*FedWelT requires C* (R * B + A)

Server communication:
* aggregates/weighted average of masked base parameters
* broadcasts aggregated params theta t & task adaptive parameters for t-1: A t-1

* Naive federated learning communicates C * R * theta
* FedWelT requires C * (R * theta + (C-1)*A) (small overhead of sparse A)
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Perhaps now with other/more trade-offs in mind as well, such as communication costs!

SIEDIEINIIY  \We are back to our question of evaluation & assumptions.
* Communic:
* Naive fede It’'s perhaps hard to single out a single set of “valid”
* FadWelT re assumptions & ways to evaluate.

But we do know that it’s more than just a single number & a
Server comm simple train-val-test split!

* aggregates/weighted average of masked base parameters
* broadcasts aggregated params theta t & task adaptive parameters for t-1: A_t-1

* Naive federated learning communicates C * R * theta
* FedWelT requires C * (R * theta + (C-1)*A) (small overhead of sparse A)
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There are so many many more frontiers we don'’t
have enough time to talk about

Combining even more perspectives, e.g. meta- or

online learning, algorithmic/system solutions that

are supervision agnostic, important topics such as
causality (rather than just correlations)...
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The final frontier?

Lifelong open world machine learning?
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The final frontier?

Lifelong open world machinelearning hybrid Al?
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Knowledge Is a lot more than just parameters.

Desktop Computer Monitor Keyboard Television
P v e ey (T TN (
(0) Seed Images 5(1),9_..1.:_“ ). | 1 o (1)' - i)
(2) Ll ] “___\ (2) Bl -___\ (2) & l _____ "E
5 (3»)‘i - (3)@ B o -
2 . = T I Rt et Desktop Computer (1)
g E (2) Train Detectors Desktop Computer (2)
o ‘ Desktop Computer (3)
=78 = A Ll
g (1.) Visual Cluster Pt i Moaitor (1)
g Discovery g i 1 Li,
A . _pRbkLE L b =
(Section 3.1) SLRELLLRRRLRLRL | ik : 1 :a
EELbbLLEELELERSTLE ; b —
ans tEEERE AN T : b |
- &1 " %L " ; : L LI%LL LHLtltL ;} " .2 b
e : . . . s AnaITam l‘L manRInan T LRELELL N ~
S : pERERE SEELPRRLES SRR L
.g: AT 1190 : vl e =
: . [ 2 3z
| (5) Retrain s T ~.2 %
Detectors PR \ Lkk : ,
4 Add New Instances
(Sectwn 33) ,
o ; ;
3 jrmmmmmmemmeos . ittt LTI \
S [ H [ ey | i \
£y ‘% ED P ! 2 _m . | Learned facts:
M ' ! i ! 1 e ! ' . .
: g1 P8 -m Iz ’ i | * Monitor is a part of Desktop Computer
' S H = 1 '
Qi , gl . B Um E é i a L) . | + Keyboard is a part of Desktop Computer
S = | = + | * Television looks similar to Monitor
| e - .
Q — /l \

“NEIL: Extracting Visual Knowledge form Web Data”, X. Chen et al, ICCV 2013



/A TECHNISCHE
UNIVERSITAT
DARMSTADT

KnOWInge, ML & AI @W&&@ o0/ Continual Al @2 hessian.Al

Knowledge is a lot more than just parameters.

Desktop Computer Monitor Keyboard Television
-------------- ‘—------------\ —------------s n
(© Seet Images R L e NEIL can extract:
- (2) S (2) WL (2) & .l -
5/ (3)“! (3)5 - (3)%5 - (3)--§ N _ _ _ _
21 S aae ™wme | | smemossssssoocssccccccosoood smcooocooooood sssssogeeooof = Sid 4 Desktop Computer (1)
(=] : ' A
1 () Train Detectors g ot e (ODbject categories with bounding boxes
o! : NG o3 Ve Desktop Computer (3)
= TH ! = PR T TR T iy Vv -
g : (1.) Visual Cluster T e et TG Moaitor (1)
8 :\ l: Dlscovery LL:EL 1 ‘ti ikE REEELLEE LALlLt ib g
Q Al . ARt Lk ShBELEibkk Bk
camiy S 2 * Labeled examples of scenes
bR 2 g X
" XX S ;§ 2. B
5 v i T S st ressesveltl = 99 "
g : Lk L kil Lt L‘tLL L-L::L. v ° = L . X m rI
S | : B Mos
; (5) Retrain  ~ SEEEEEAE RS Qé 3
Detectors - ULt N
" " "
() Add New Insances ) e Visual subclasses of object categories
, (Section 33) . | | @
gi P et \i goTTTT TS < LT TTTTTTITIEETEN \ = .
S ! | ' [ ", ar \
z £ E D !‘E ; | MR | Learned facts: Py " "
o E-: rem—— - ’ © | » Monitor is a part of Desktop Computer
' S s = ’ '
‘;" , g’-‘ P8 Eh = éi a = * Keyboard is a part of Desktop Computer
Z = | = * Television looks similar to Monitor
I LT

“NEIL: Extracting Visual Knowledge form Web Data”, X. Chen et al, ICCV 2013
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Knowledge is a lot more than just parameters.

“We define visual knowledge as any information that can be useful for improving
vision tasks such as image understanding and object/scene recognition.

One form of visual knowledge would be labeled examples of different categories or
labeled segments/boundaries. Another example would be relationships.

Our knowledge base consists of labeled examples of

(1) Objects; (2) Scenes; (3) Attributes & relationships of 4 types:
(1) Object-Object; (2) Object-Attribute; (3) Scene-Object; (4) Scene-Attribute”
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Knowledge is a lot more than just parameters.
Al is more than machine learning!

Desktop Computer Monitor Keyboard Television
P v e ey (T TN (
(0) Seed Images 5(1),9_..1.:__\ ). | 1 o (1)' - .
(2) L} ll.___\ (2) EZ1 -___\ (2) & l _____ "E '
s (3)‘! (3)9- (3)&,,5 i
31 o N Y ammme | | Smmemmssseeeer seccccccccooos scoooooooo-o
(-]
E! (2) Train Detectors
O
. > whbBEpRLLL AT
g; (1.) Visual Cluster T e e
2 Dlsgovery e L . -
(Sectlon 3.1) SEREEEREE ] LEL 5 b E
LRRRERLLLL " ) Lk L]
t %ILT LLRELLL It N p g
! Sglkl " li 1 L;f ‘L L Lrt b ALL iL ; Lt ‘2
§ E ® 00 ;‘Jl bLEELLELEELL Ln " LLl;uﬁLLL 1: :?tf E
‘= : ) L Phbokk " BEbLL L
s SR &
5 (5) Retrain : T T T v —~
Detectors - SR LLLEL LR e \ ~
| @ Add New Instances
' (Sectlon 33
s i |
a e el || [ geTmmmemmssssssl 0 gemmTmomemmmmemsd LT TTTTTIETIETTEN
3 b \ [ \ | \
£ | 8 H i [ facebook N 4 .
z! QEED: ;,!: =;_ﬂ:
| 3 Bl ol B e
- PN g : gm
£ .- B .
=< | " | \ i
g:-: -GG: !H‘

Desktop Computer (1)
Desktop Computer (2)
Desktop Computer (3)

Monitor (1)

Discovery
(Section 3.2)

Learned facts:

* Monitor is a part of Desktop Computer
* Keyboard is a part of Desktop Computer
* Television looks similar to Monitor

“NEIL: Extracting Visual Knowledge form Web Data”, X. Chen et al, ICCV 2013

Data
Resources

(e.g., corpora)

Knowledge Base

| I

| I

E beliefs : Knowledge
. . Integrator
E i T — i

N o B

E | candidate | E

! facts :

: :

: I

Subsystem Components

TECHNISCHE
UNIVERSITAT
DARMSTADT

“Towards an Architecture for Never-Ending Language Learning”, Carlson et
al, AAAI 2010; “Never-Ending Learning”, T. Mitchell et al, AAAI 2015
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Knowledge is a lot more than just parameters.
Al is more than machine learning!

Knowledge Base

NELL consists of (a really brief overview):
e Coupled Pattern Learner (CPL)
e Coupled Set Expander for Any Language (CSEAL)

Knowledge
Integrator

. beliefs .
E T — i
N G W
' candidate | _i
facts

Data
Resources
(e.g., corpora)

e Coupled Morphological Classifier (CMC)
* Rule Learner (RL)
e Knowledge Integrator (Kl)

Subsystem Components

“Towards an Architecture for Never-Ending Language Learning”, Carlson o -+ NE”_ f()r images (|n the SeCOnd VerSiOn)
et al, AAAI 2010; “Never-Ending Learning”, T. Mitchell et al, AAAI 2015
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Knowledge is a lot more than just parameters.
Al is more than machine learning!

Knowledge Base

Coupled Pattern Learner (CPL):

Cbe e fsj Knowledge
i Integrator ] ” s
 Data > <4 e | earns contextual patterns like “mayor of X" and
esources [ !
e.d.. coroora X andidate | _| (« ” . .
(2.9, corpora) T s | X plays for Y” to extract categories/relations

e Uses co-occurrence statistics between noun-
phrases and contextual patterns

Subsystem Components ' e Relationships are used to filter out patterns that

“Towards an Architecture for Never-Ending Language Learning”, Carlson are too general
et al, AAAI 2010; “Never-Ending Learning”, T. Mitchell et al, AAAI 2015
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Knowledge is a lot more than just parameters.

Al is more than machine learning!

Knowledge Base

Knowledge
Integrator

. beliefs .
i T — E
N G W
' candidate | _|
facts

Data
Resources
(e.g., corpora)

Subsystem Components

“Towards an Architecture for Never-Ending Language Learning”, Carlson
et al, AAAI 2010; “Never-Ending Learning”, T. Mitchell et al, AAAI 2015

Coupled Set Expander for Any Language (CSEAL):

e Queries internet with sets of beliefs from
categories/relations + mines list & tables to
extract novel instances

e Uses mutual exclusion relationships to provide
negative examples, used to filter out overly
general lists and tables
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Knowledge is a lot more than just parameters.
Al is more than machine learning!

Knowledge Base

Coupled Morphological Classifier (CMC):

Knowledge

Re/ie Integrator

] I
: e e

Data

o Set of binary logistic regression models to classify

Resources E —— E
e.d.. corpora L | candidate | _; _
(¢.g., corpora) Z noun phrases based on morphological features

' | (words, affixes, capitalization, part-of-speech ...)
—>- CPL ||CSEAL || cMC w Rule Learner (RL)
""""" Subsystem Components * First order relational learning to learn probabilistic
“Towards an Architecture for Never-Ending Language Learning”, Carlson Horn clauses. Used to infer new relation

et al, AAAI 2010; “Never-Ending Learning”, T. Mitchell et al, AAAI 2015 _ _ _ _
iInstances from other relation instances in the KB
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Knowledge is a lot more than just parameters.

Al is more than machine learning!

Knowledge Base

Knowledge
Integrator

beliefs
T —

g

|
]
E candidate
|

Data
Resources
(e.g., corpora)

facts

Subsystem Components

“Towards an Architecture for Never-Ending Language Learning”, Carlson
et al, AAAI 2010; “Never-Ending Learning”, T. Mitchell et al, AAAI 2015

Knowledge Integrator (KI) + coupling constraints
e Confidence from a single source > 0.9

e Moderate confidence Iif alternate classifiers agree
e Respects mutual exclusion (disjoint categories)

e Subsets/supersets are coupled & Horn clause
coupling (learned mappings are consistent)

e Once promoted/included, never demoted
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“We will never truly understand machine or human learning until we can build computer
programs that, like people,

e Jearn many different types of knowledge or functions,
e from years of diverse mostly self-supervised experience,

* |n a staged curricular fashion, where previously learned knowledge enables learning
further types of knowledge,

e Where self-reflection and the ability to formulate new representations and new learning
tasks enable the learner to avoid stagnation and performance plateaus.”

(Quote form the NELL paper, Mitchell et al, AAAI 2015)
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Thanks for joining the course!

Q&A session time



