## Continual Machine Learning Summer 2023

#### Teacher

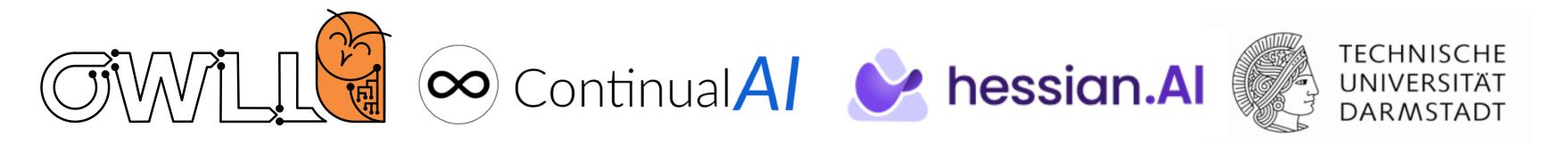
Dr. Martin Mundt,

hessian.AI-DEPTH junior research group leader on Open World Lifelong Learning (OWLL) & researcher in the Artificial Intelligence and Machine Learning (AIML) group at TU Darmstadt

#### Time

Every Friday 14:25 - 16:05 CEST

https://www.youtube.com/playlist?list=PLm6QXeaB-XkA5-IVBB-h7XeYzFzgSh6sk



#### **Course Homepage**

http://owll-lab.com/teaching/cl lecture 23



## Week 1: Introduction and Motivation





#### **Course requirements**

- Basic understanding of the ideas behind artificial intelligence, machine learning, deep learning
- In-depth knowledge of algorithms will be beneficial, but is not a requirement. -> We will revisit the most important concepts when necessary
- No formal practical tutorial yet, but materials exist to "try & learn" -> programming experience not formally required





#### **Course materials**

- Mainly the lectures, slides + linked materials
- Potentially helpful "Lifelong Machine Learning" by Chen & Liu
- Field is rapidly evolving & consolidation of works is largely still open



MORGAN & CLAYPOOL PUBLISHERS

#### Lifelong Machine Learning

Second Edition

Zhiyuan Chen **Bing Liu** 

Synthesis Lectures on Artificial INTELLIGENCE AND MACHINE LEARNING

Ronald J. Brachman and Peter Stone, Series Editors



### Motivation - what do you think: what is machine learning?





#### The static ML workflow

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

Machine Learning, T. M. Mitchell, McGraw-Hill, 1997





#### **ML recap: train - test splits**

"The result of running the machine learning algorithm can be expressed as a function. The precise form of the function is determined during the training phase, also known as the learning phase, on the basis of the training data.

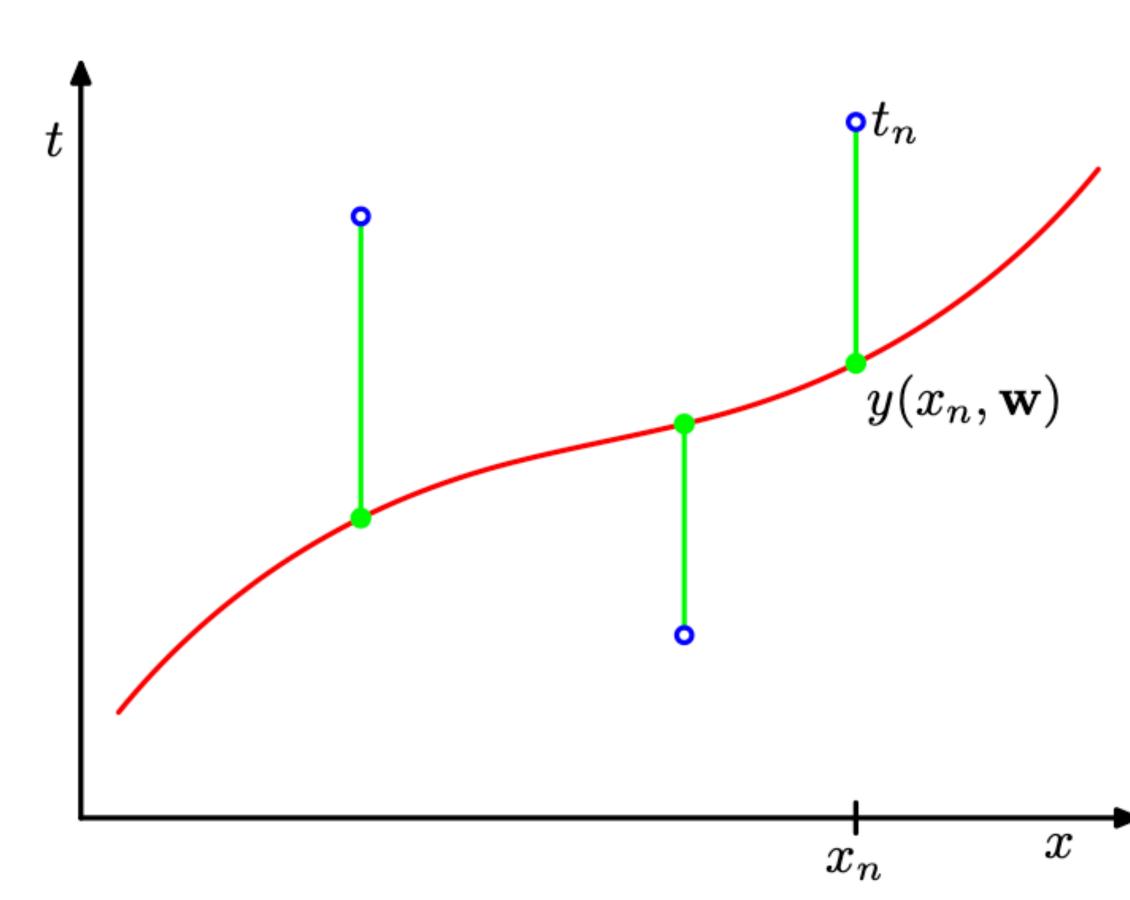
Once the model is trained it can then determine the identity of new images, which are said to comprise a **test set**. The ability to categorize correctly new examples that differ from those used for training us known as generalization".

Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006, example on image classification: introduction page 2





#### ML recap: error/loss & learning



## Pattern Recognition and Machine Learning, C. M. Bishop,











The error function (1.2) corresponds to (one half of) the sum of the squares of the displacements (shown by the vertical green bars) of each data point from the function  $y(x, \mathbf{w}).$ 

Springer 2006, example on polynomial curve fitting: intro page 6





#### ML recap: under & overfitting

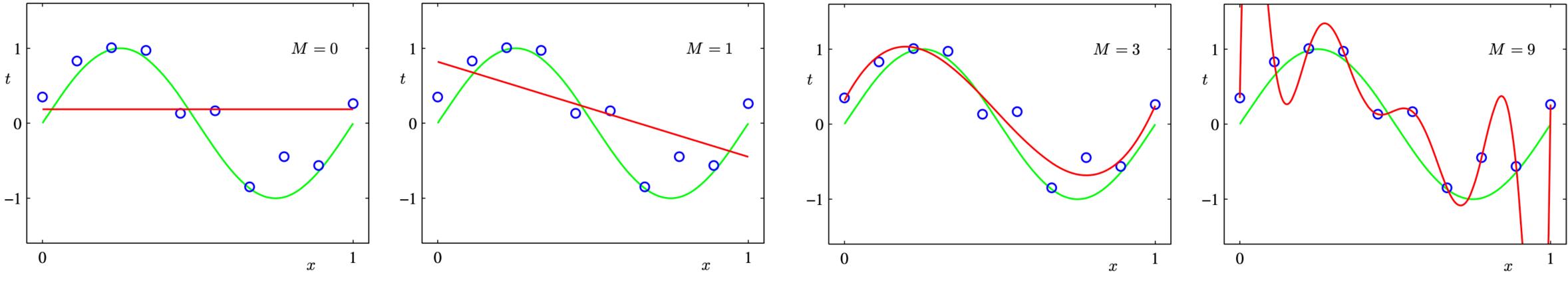
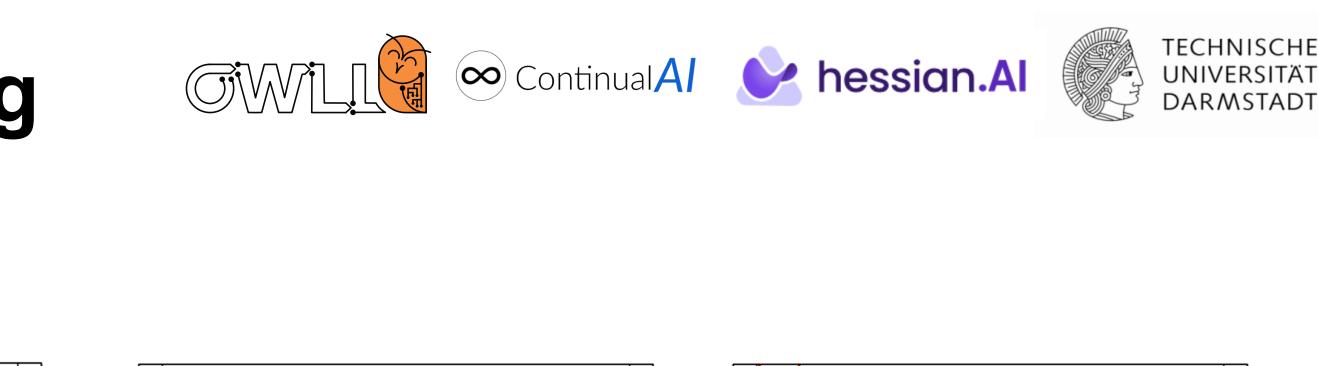


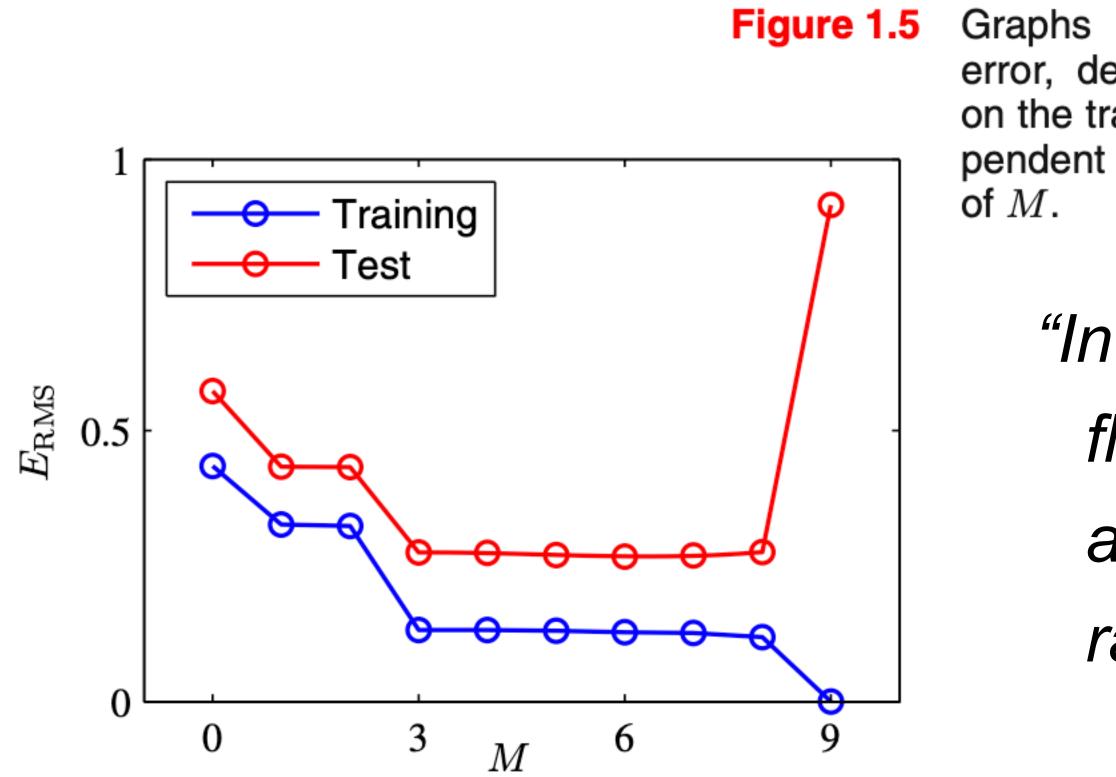
Figure 1.4 Plots of polynomials having various order Figure 1.2.

Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006, example on polynomial curve fitting: introduction page 7



Plots of polynomials having various orders M, shown as red curves, fitted to the data set shown in

#### ML recap: under & overfitting



Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006, example on polynomial curve (over-)fitting in the introduction on page 8



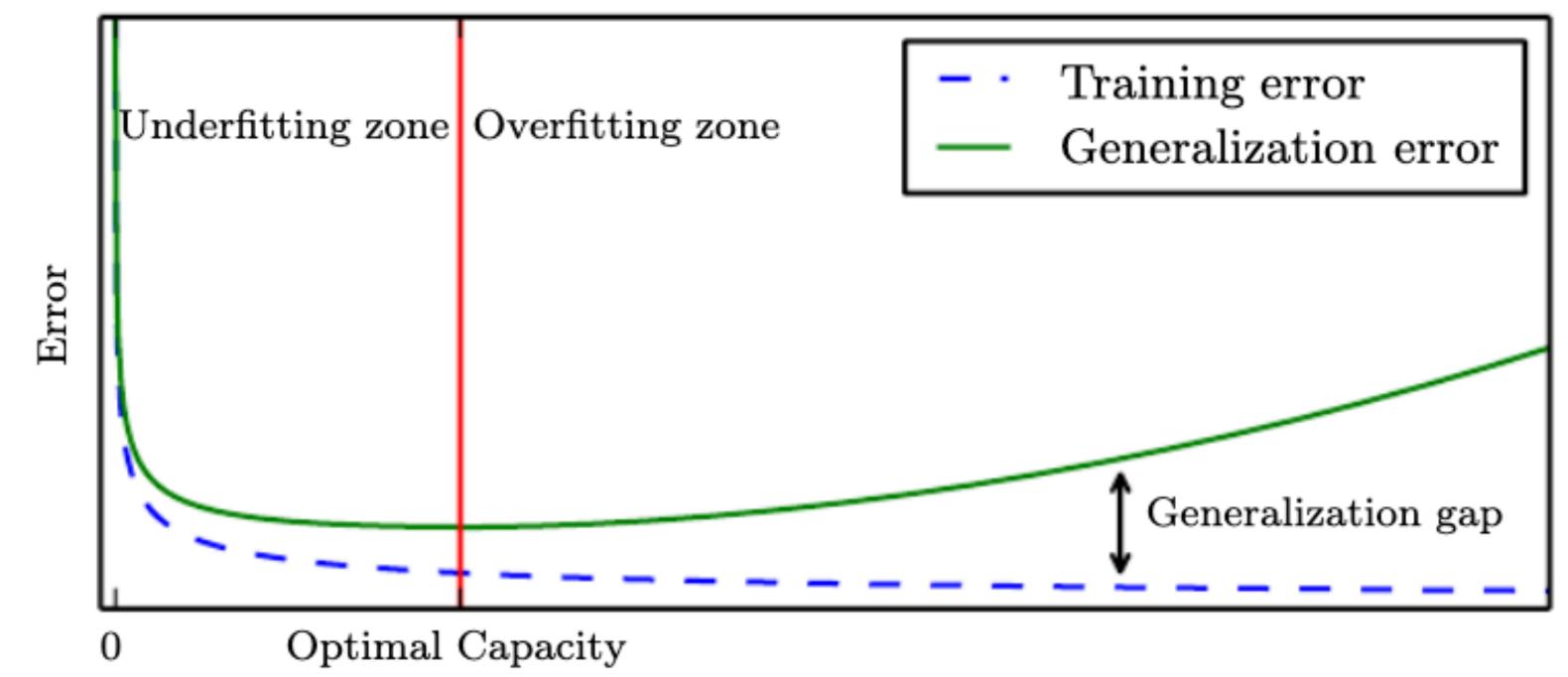
Graphs of the root-mean-square error, defined by (1.3), evaluated on the training set and on an independent test set for various values

> "Intuitively, what is happening is that the more flexible polynomials with larger values of M becoming increasingly tuned to the are random noise on the target values".

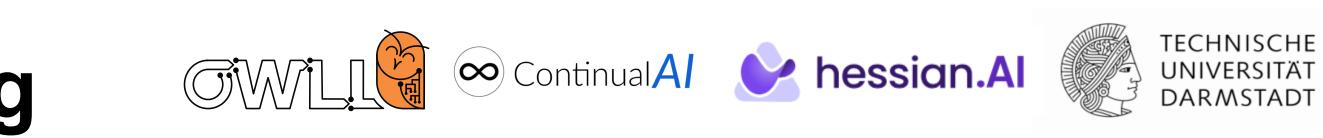


#### ML recap: under & overfitting

#### This picture is still very much the same in the "deep learning era"



Deep Learning, Goodfellow, Machine Learning



- Capacity
- Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016,
  - Machine Learning Basics chapter, page 112.

### What do you think are the goals of ML?





#### The static ML workflow: goals

"Of course, when we use a machine learning algorithm, we do not fix the parameters ahead of time, then sample both datasets. We sample the training set, then use it to choose the parameters to reduce training set error, then sample the test set.

The factors determining how well a machine learning algorithm will perform are its ability to: 1. Make the training error small.

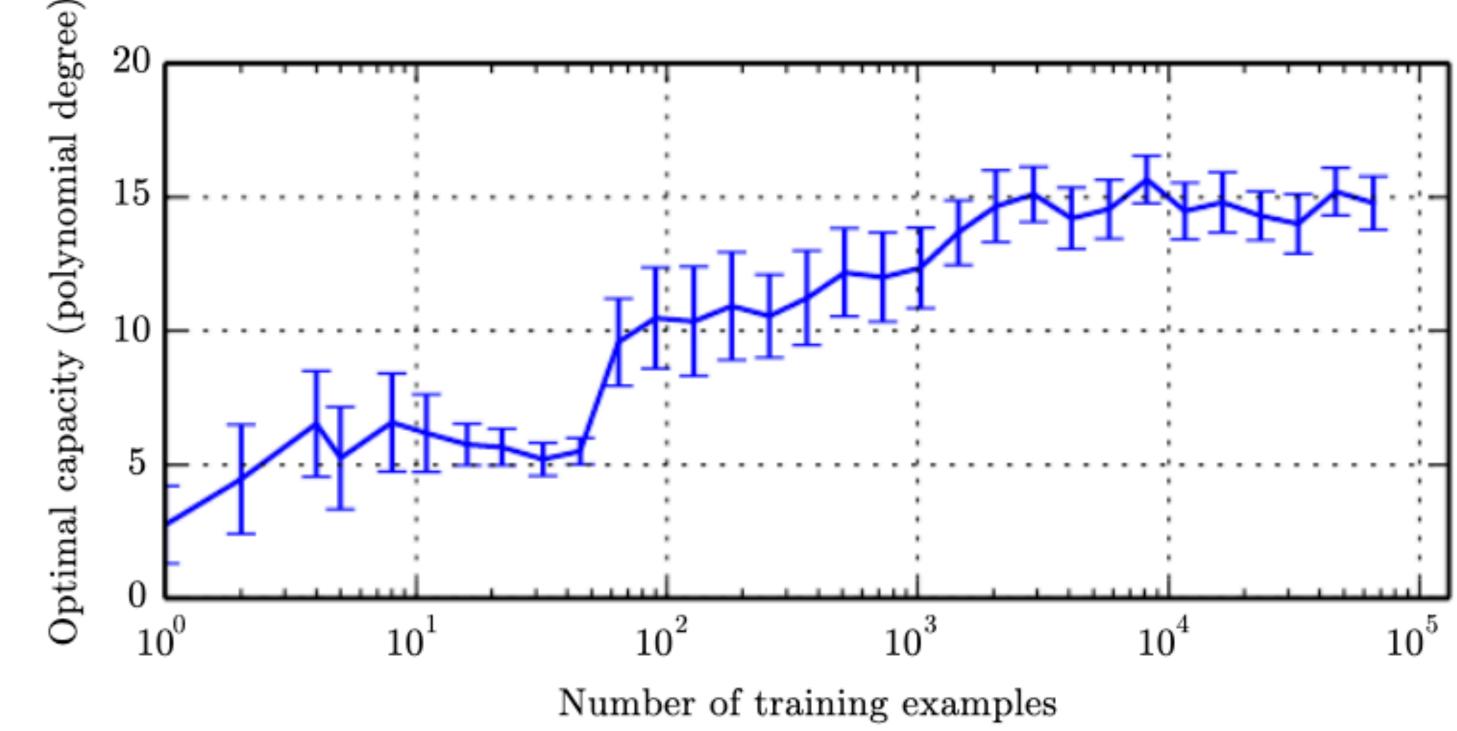
2. Make the gap between training and test error small".

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016, Machine Learning Basics chapter, page 108.





#### The static ML workflow: goals





#### So is ML all about finding a large dataset & a right capacity model?

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016, Machine Learning Basics chapter, page 114.

## How do you think datasets should be acquired?





#### Static datasets: controlled

#### Small scale, but (some) controlled acquisition parameters

| Image  | nage Object pose |                 |                | Illumination direction |                              |                               |
|--------|------------------|-----------------|----------------|------------------------|------------------------------|-------------------------------|
| number | Frontal          | 22.5 °<br>right | 22.5 °<br>left | Frontal                | $pprox 45~^{\circ}$ from top | $pprox 45~^{\circ}$ from side |
| 1      | X                |                 |                | X                      |                              |                               |
| 2      | X                |                 |                |                        | X                            |                               |
| 3      | X                |                 |                |                        |                              | X                             |
| 4      |                  | X               |                | X                      |                              |                               |
| 5      |                  | x               |                |                        | X                            |                               |
| 6      |                  | x               |                |                        |                              | X                             |
| 7      |                  |                 | X              | X                      |                              |                               |
| 8      |                  |                 | X              |                        | X                            |                               |
| 9      |                  |                 | X              |                        |                              | x                             |

Table 3: The labeling of images within each scale in the KTH-TIPS database.

Hayman et al, "On the significance of real-world conditions for material classification", ECCV 2004 & Fritz, Hayman et al, "The KTH-TIPS database", technical report 2004







Image #1



Image #4



Image #2



Image #5



Image #3

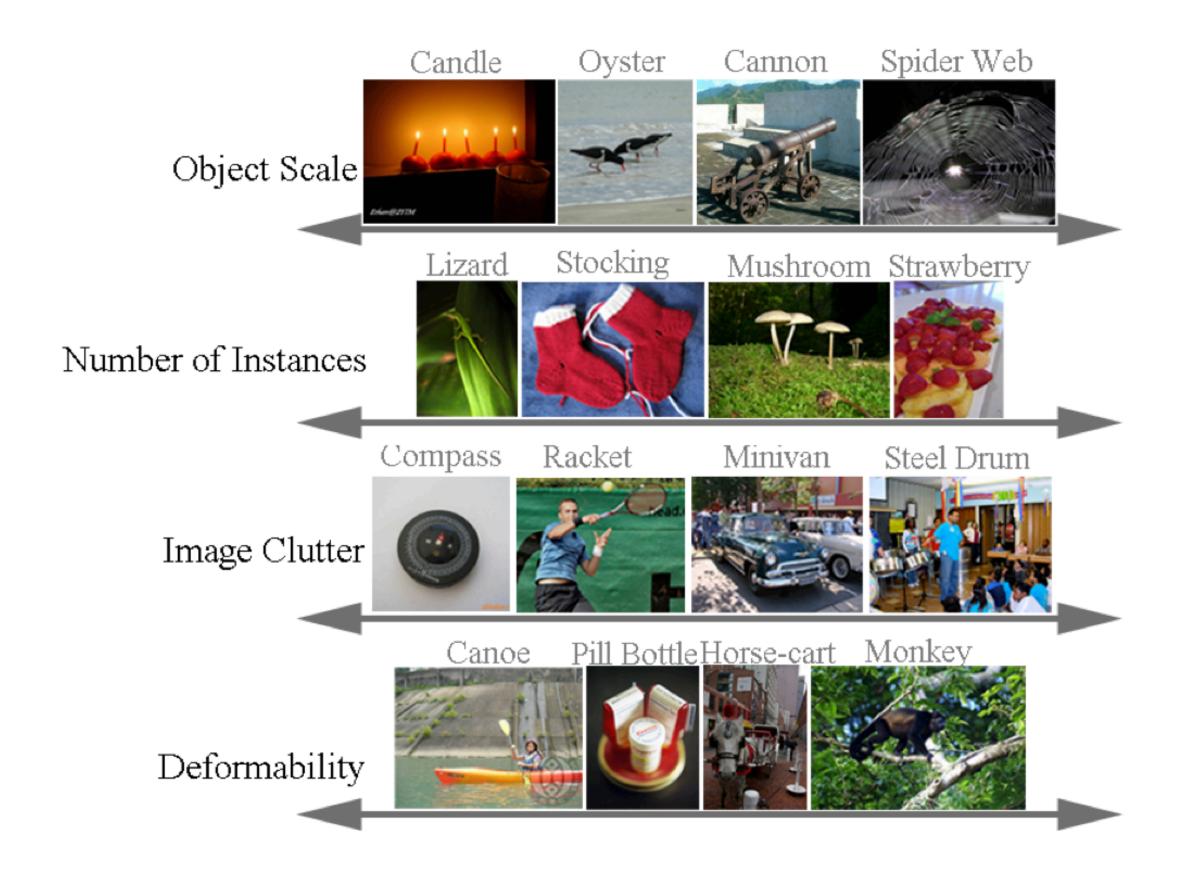


Image #6



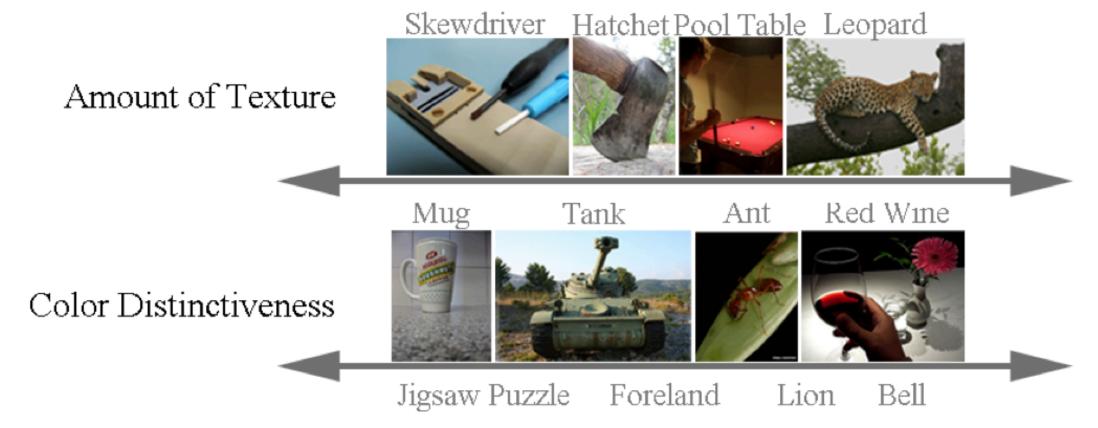
#### Static datasets: large scale

#### A big focus of modern dataset has been on large scale & diversity



Russakovsky & Deng et al, "ImageNet Large Scale Visual Recognition Challenge, IJCV 2015, (challenges since 2010)







#### Static datasets: large scale

And trying to ensure reasonable train, validation, test splits through complex collection processes

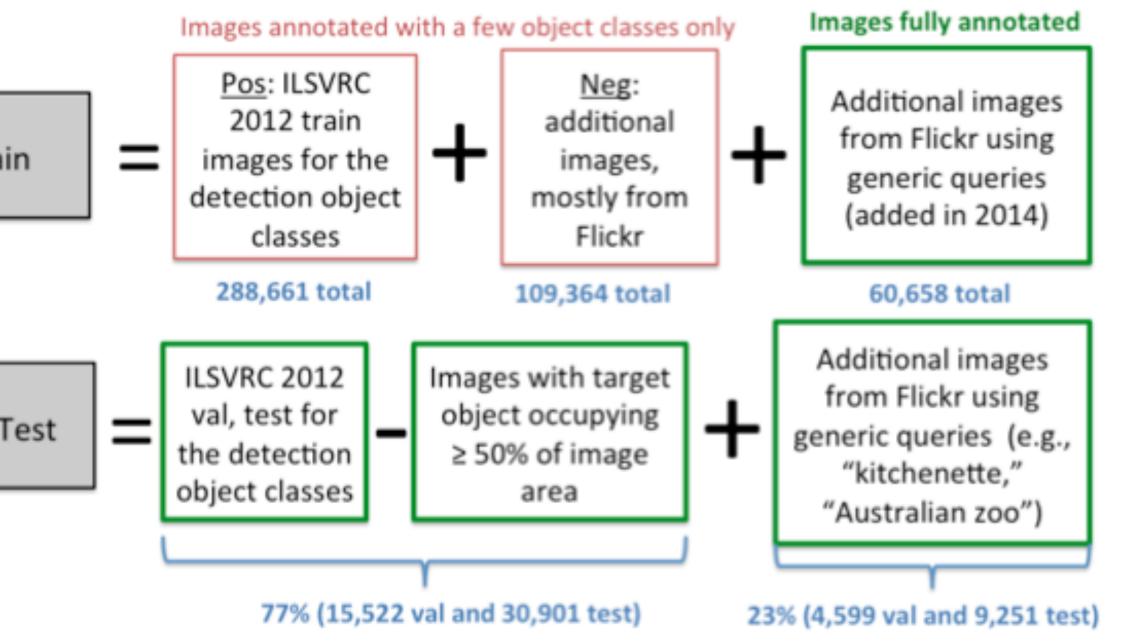
| Tra |
|-----|
|-----|

Val, Test

| Year          | Train images (per class) | Val images (per class) | Test images (per class) |
|---------------|--------------------------|------------------------|-------------------------|
| ILSVRC2010    | 1,261,406 (668-3047)     | 50,000 (50)            | 150,000 $(150)$         |
| ILSVRC2011    | 1,229,413 (384-1300)     | 50,000 (50)            | 100,000 (100)           |
| ILSVRC2012-14 | 1,281,167 (732-1300)     | 50,000 (50)            | 100,000 (100)           |

Russakovsky & Deng et al, "ImageNet Large Scale Visual Recognition Challenge, IJCV 2015, (challenges since 2010)





#### Image classification annotations (1000 object classes)

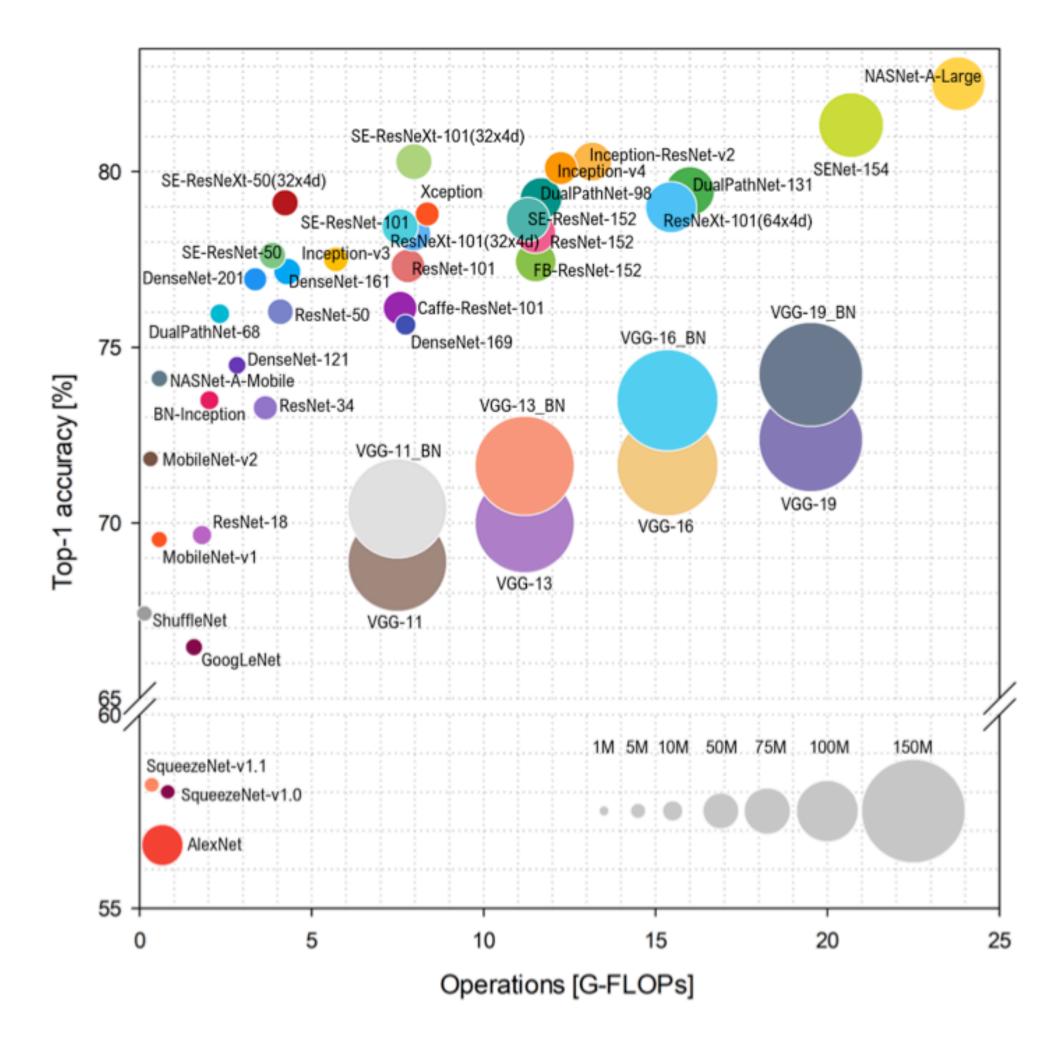


# What do you think: should our primary goal be the solution to such benchmarks?





#### Static models



Bianco et al, "Benchmark Analysis of Representative Deep Neural Network Architectures", IEEE Access, 2018

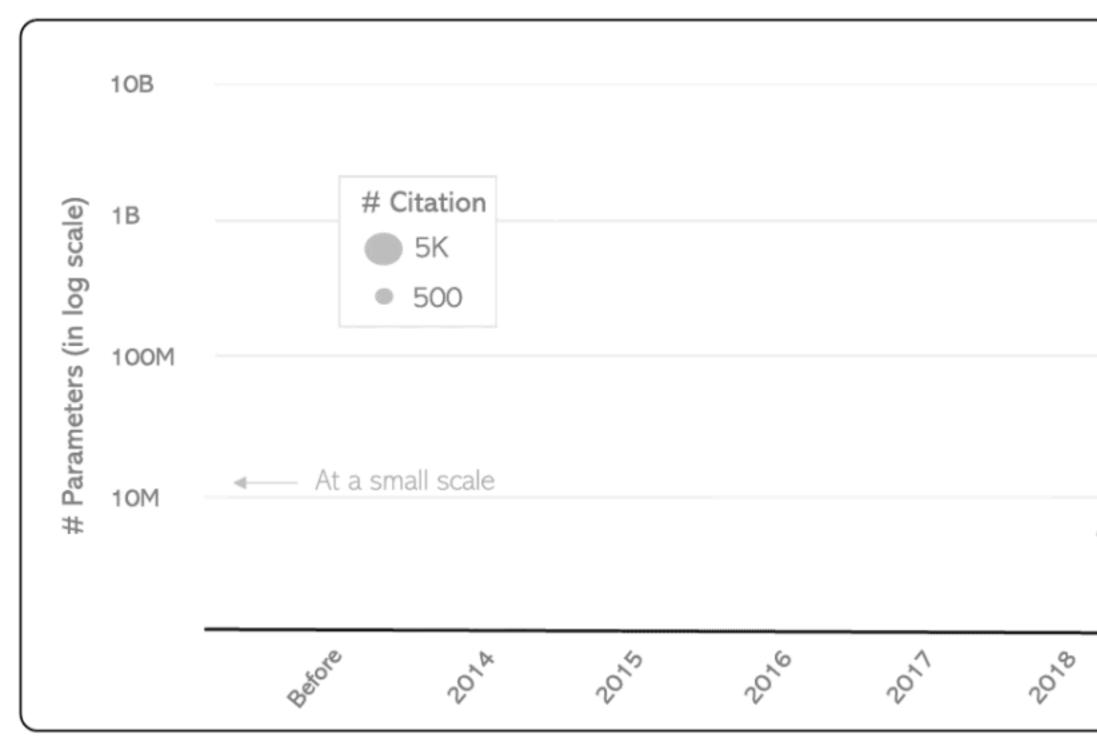


#### A very big emphasis has then been on "solving" such benchmarks

ImageNet is a prime example, where models & compute got bigger and more accurate over time



#### Static models



Li & Gao, "A deep generative model trifecta: three advances that work towards harnessing large-scale power, Microsoft Research Blog, 2020: https://www.microsoft.com/en-us/research/blog/a-deep-generative-model-trifecta-three-advances-that-work-towards-harnessing-large-scale-power/

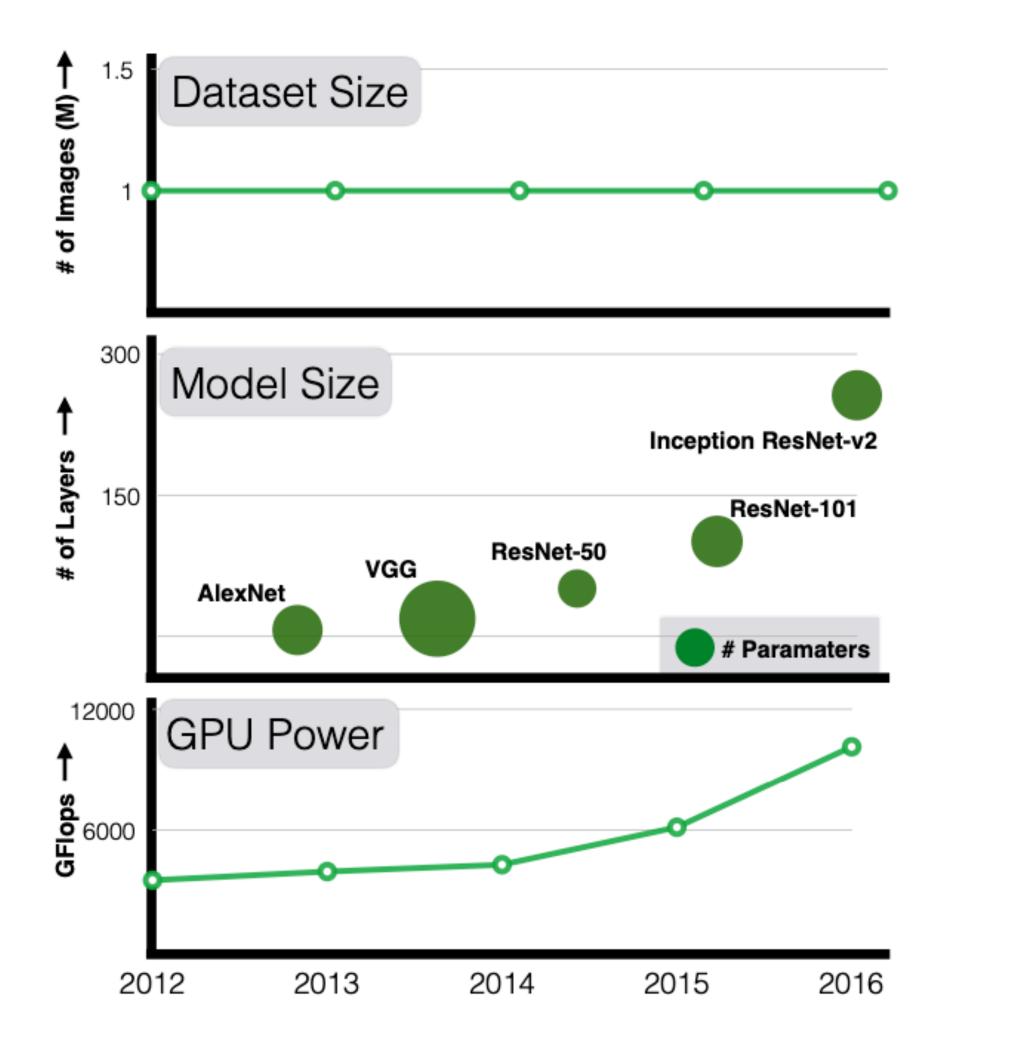


| At a large scale ——▶ |  |
|----------------------|--|
|                      |  |
| 2020 2020            |  |

# This trend continues even today



#### Data and model centrism



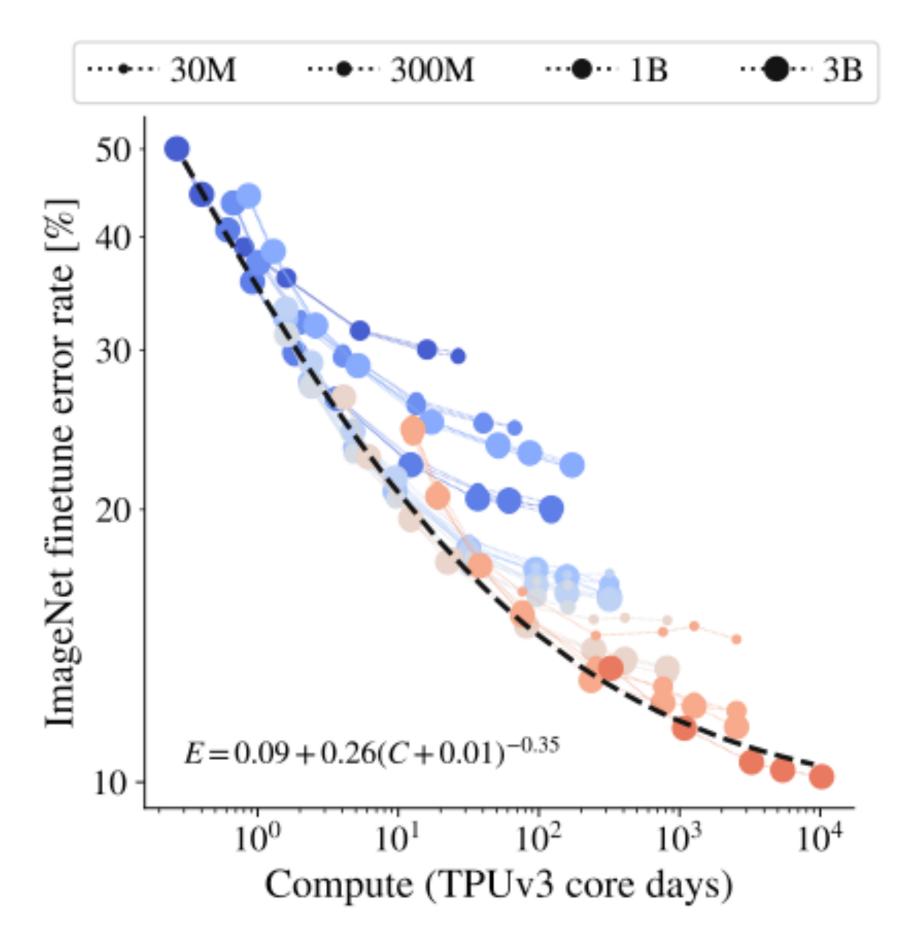


- At the same time, it's often "either" models or data
- For example, ImageNet has remained largely static\* over time
- \* (excluding some concerns over fair representation)





#### Data and model centrism



Zhao et al, "Scaling Vision Transformers", preprint 2021

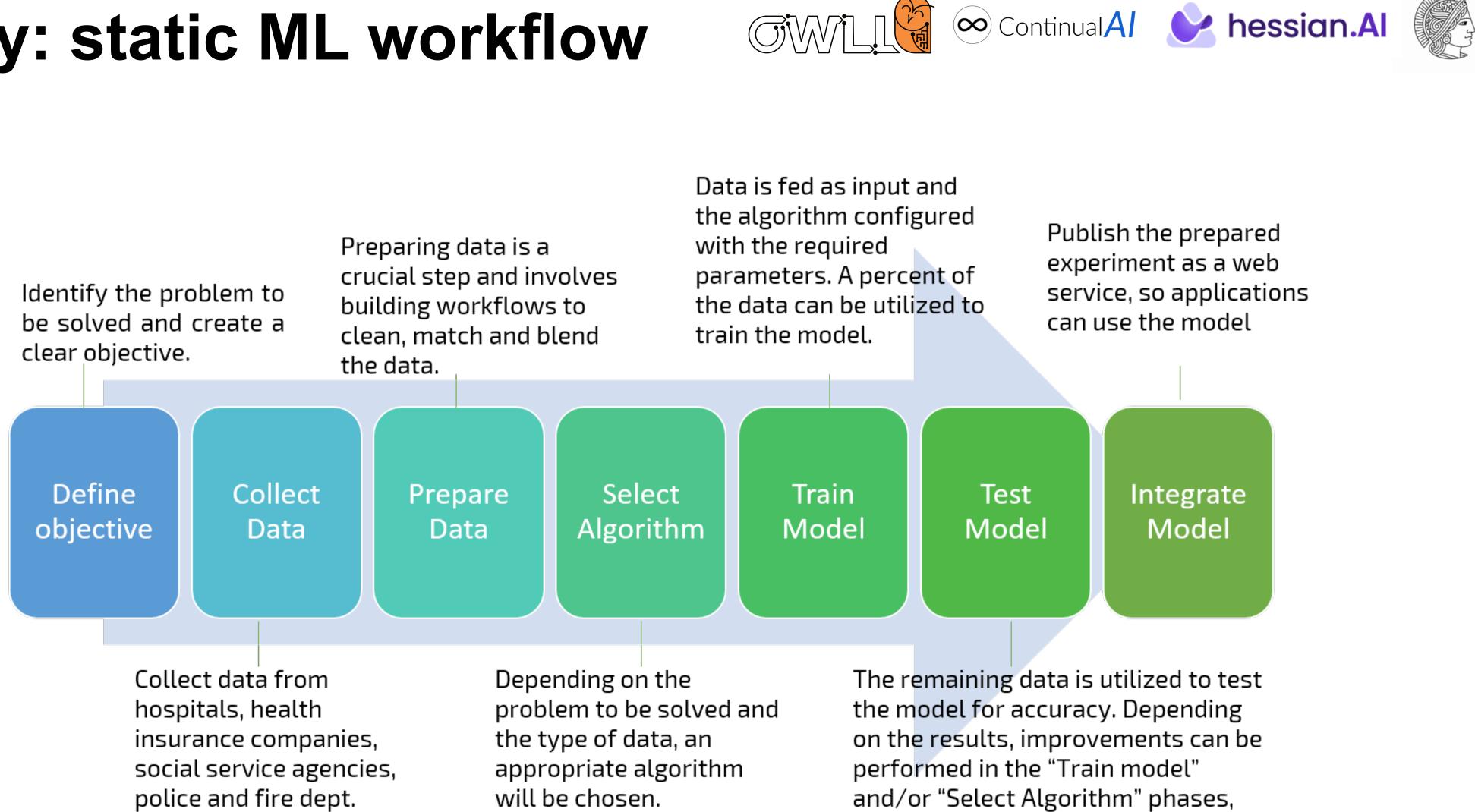


#### Or conversely, a model is picked (here a transformer) and datasets are extended

#### Example from ImageNet to the (nonpublic) JFT 300M & JFT-3B



### Summary: static ML workflow

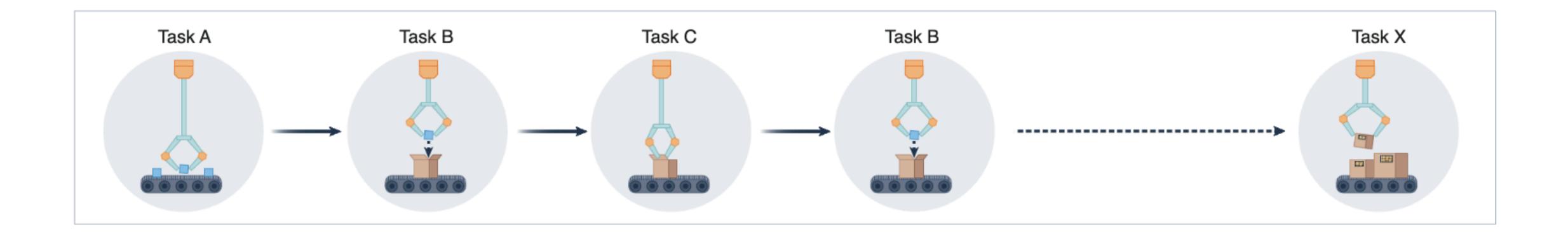


and/or "Select Algorithm" phases, iteratively.

Figure from https://www.congrelate.com/get-workflow-machine-learning-images/



#### But what if we want to continue learning tasks? ...



Kudithipudi et al, "Biological underpinnings for lifelong learning machines", Nature Machine Intelligence (4), 2022





#### Or add more categories?





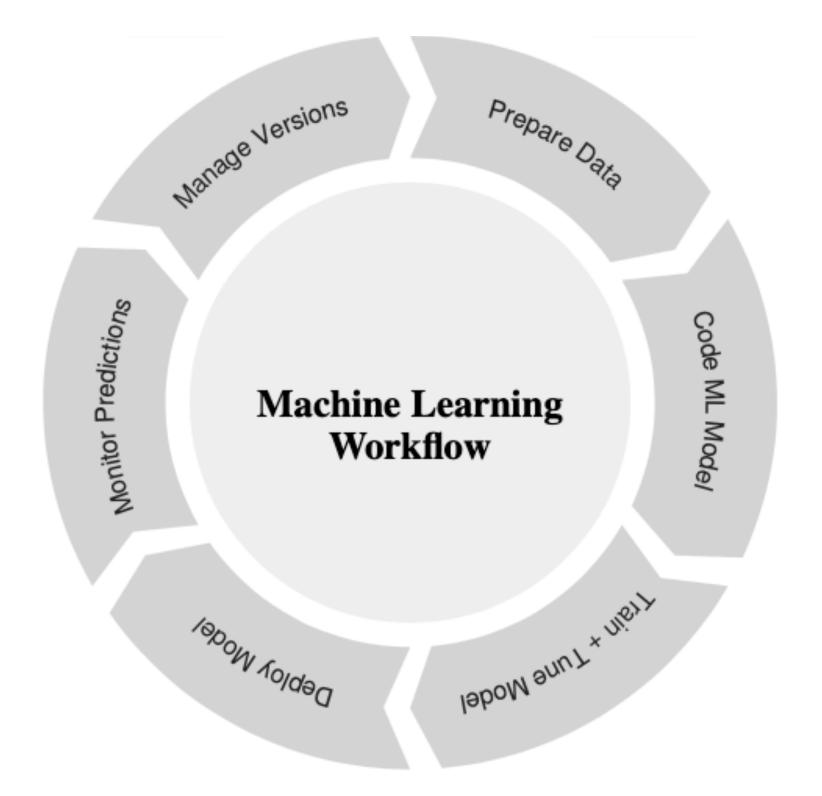
Image examples from CUB200: "black footed albatross", "rusty blackbird", "sooty albatross", and "cardinal". Welinder et al, Caltech-UCSD Birds 200, CNS-TR-2010-001, California Institute of Technology, 2010







#### Can we just iterate?



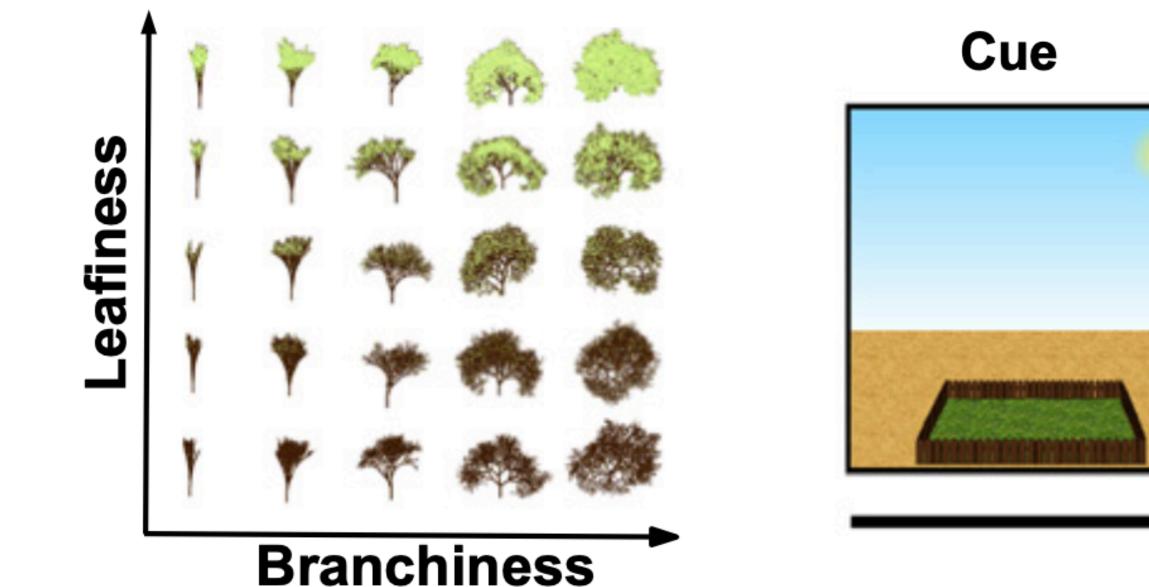
#### What do you think could happen?

Mundt et al, "CLEVA-Compass: A Continual Learning Evaluation Assessment Compass to Promote Research Transparency and Comparability", ICLR 2022





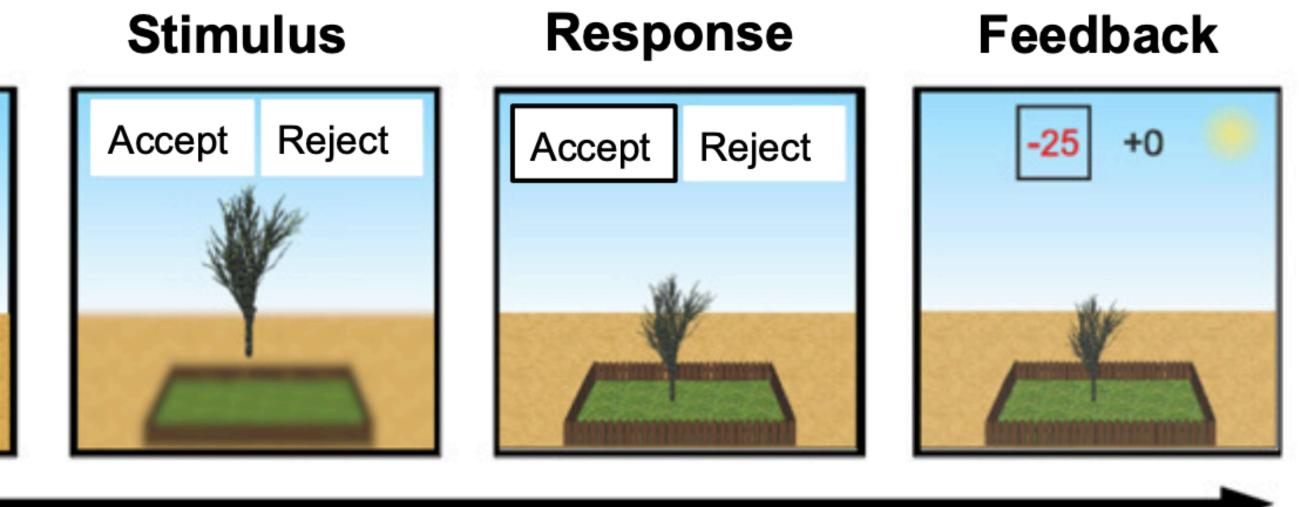
#### **Continual learning**



## during "training". Example study: categorization of trees by dimensions of leaf & branch density

Flesch et al, "Comparing continual task learning in minds and machines", PNAS 115, 2018





#### Time

Humans seem to actively benefit from temporal correlation





#### **Continual learning**

#### What do you think will happen if we present both of these to a machine learner?

Flesch et al, "Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals", preprint, 2022

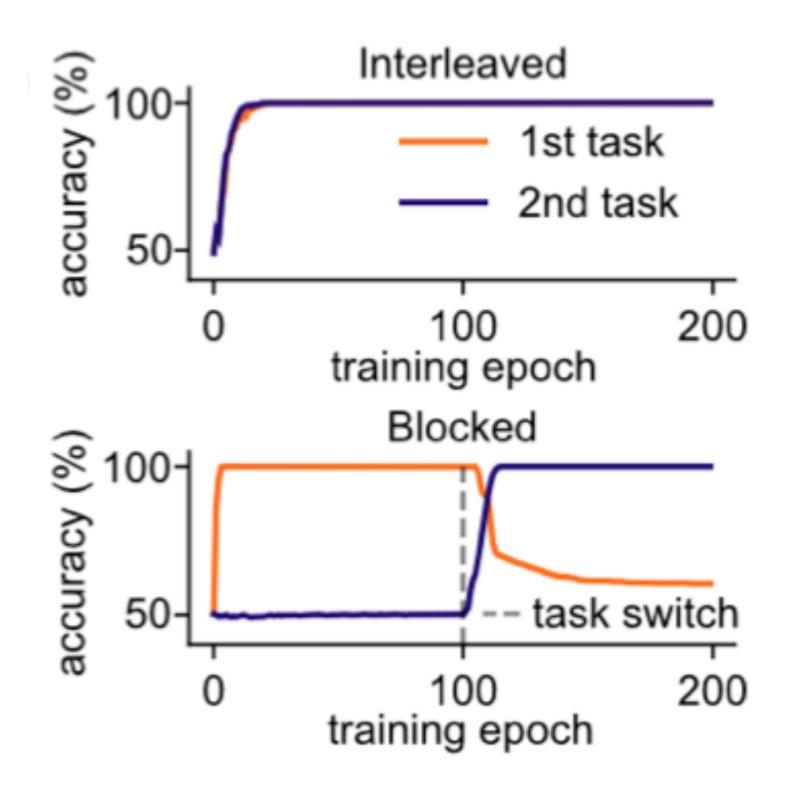




# Blocked Training Curriculum



#### **Continual learning**



Flesch et al, "Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals", preprint, 2022



# Interleaved Training Curriculum

# Blocked Training Curriculum

#### Machine learning typically shuffles data & performs poorly when data is ordered



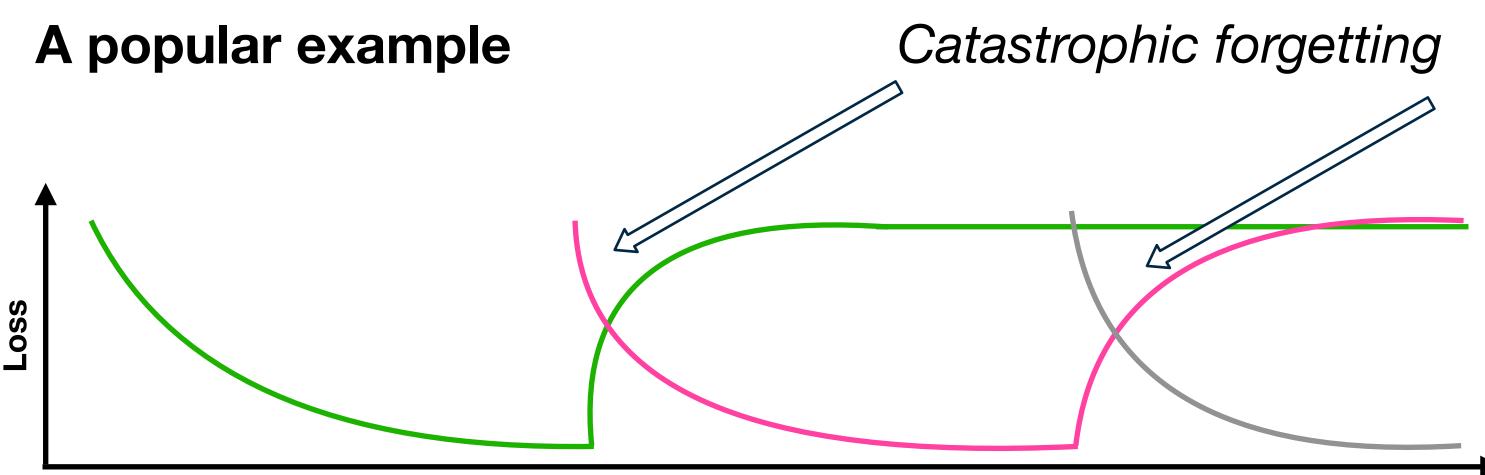


### Why do we need an entire lecture?





#### Challenge: forgetting



Task 1



Task 2





Key assumption: no access to/ revisiting of prior "task" data!









#### Challenge: the world is "open"

#### The threat of unknown unknowns





#### What do you think the prediction will be for a ML based classifier?

#### Challenge: the world is "open"

#### The threat of unknown unknowns



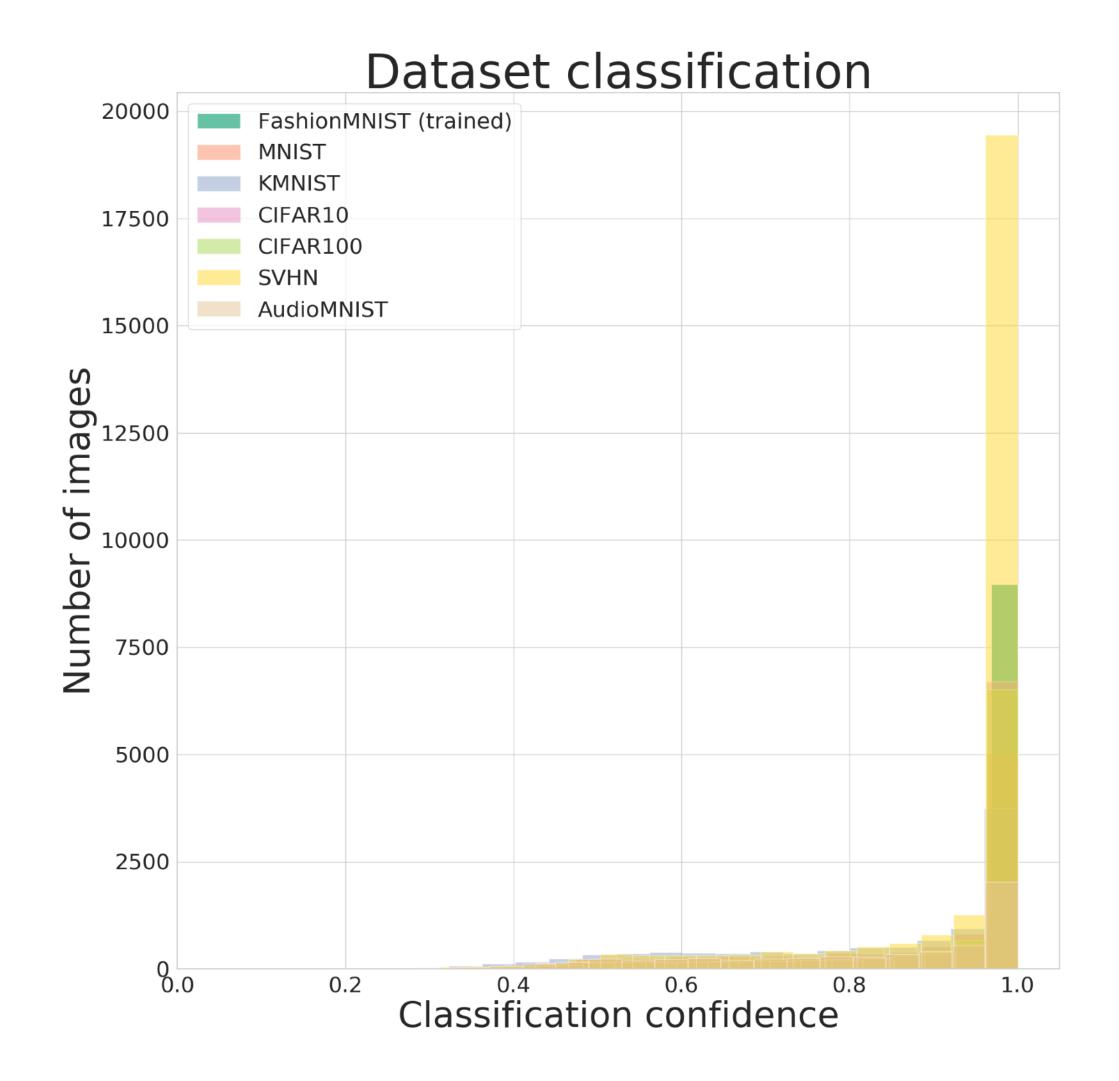


#### Most ML models are overconfident

#### They don't "know when they don't know"



#### Challenge: the world is "open"



Mundt et al "Open Set Recognition Through Deep Neural Network Uncertainty, Does Out-of-Distribution Detection Require Generative Classifiers?", ICCV Statistical Deep Learning Workshop 2019 (Based on a long-known problem, Matan1990)



#### A quantitative example:

- Train a neural network classifier on a dataset (here Fashion items)
- 2. Log predictions for arbitrary other datasets
- 3. Observe that majority of misclassifications happen with large output "probability"

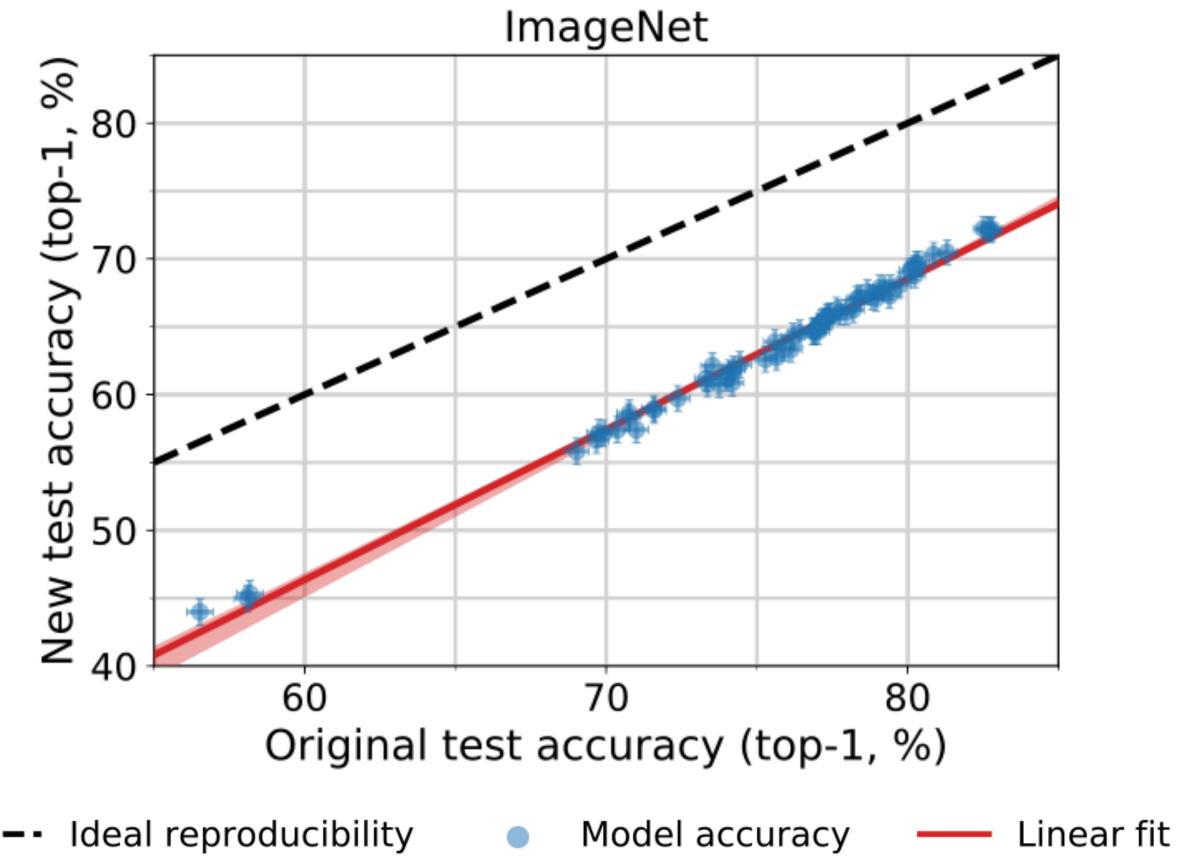
### "But this example is unrealistic"!

# What do you think will happen if we collect a second test set (following the same procedure) & evaluate?





# **Challenge: distribution shifts**



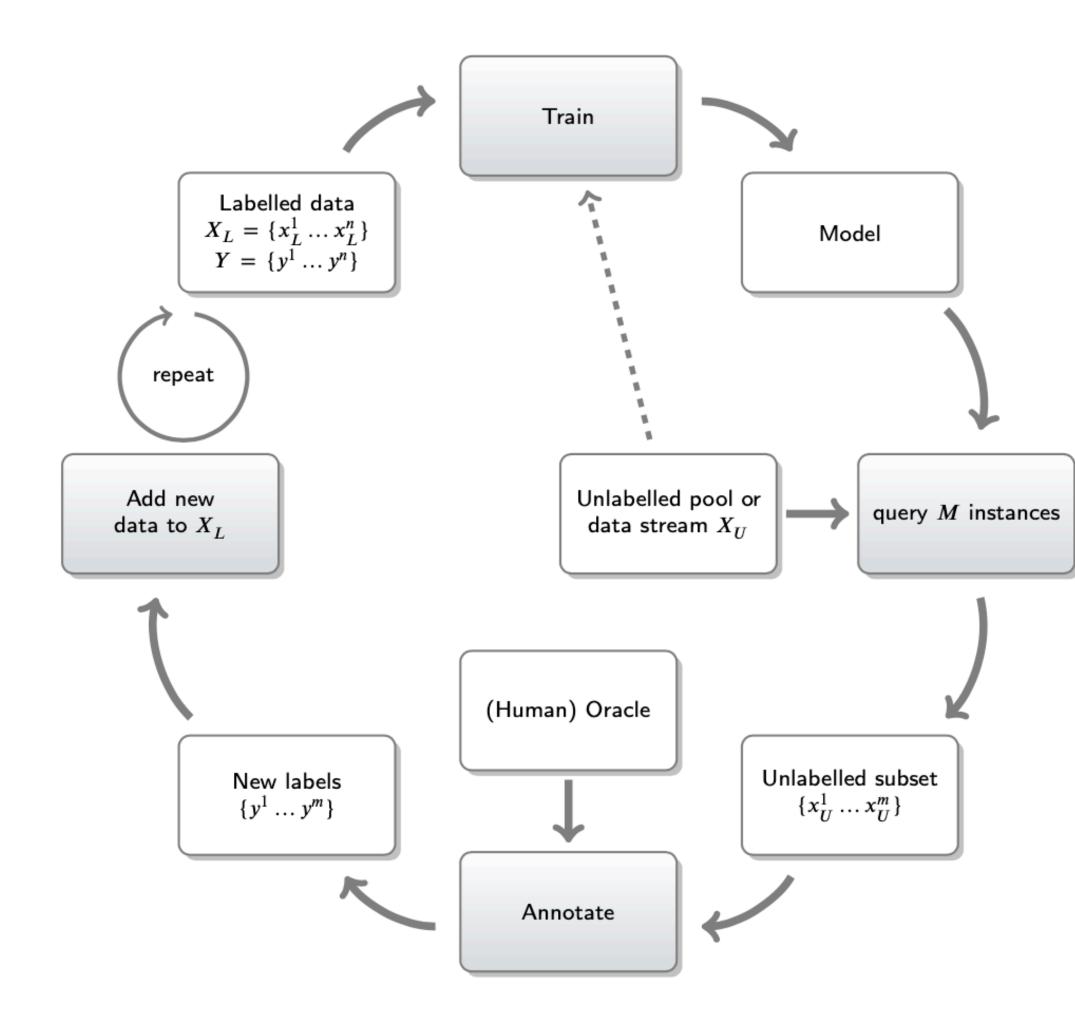
Recht et al, "Do ImageNet Classifiers Generalize to ImageNet?", ICML 2019



#### Natural data distributions are complex & can easily shift!

# Performance loss even happens if we recollect another "test set" with the same instructions a second time!

# Challenge: select & add data



Mundt et al, "A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning, Neural Networks 160, 2023



What if we want to add data over time?

- How to pick data?
- Does the data belong to the task?
- How similar is the data?
- How optimize accumulated error (is this even what we want?)





# What kind of data would you intuitively pick?





# **Challenge: concept difficulty**

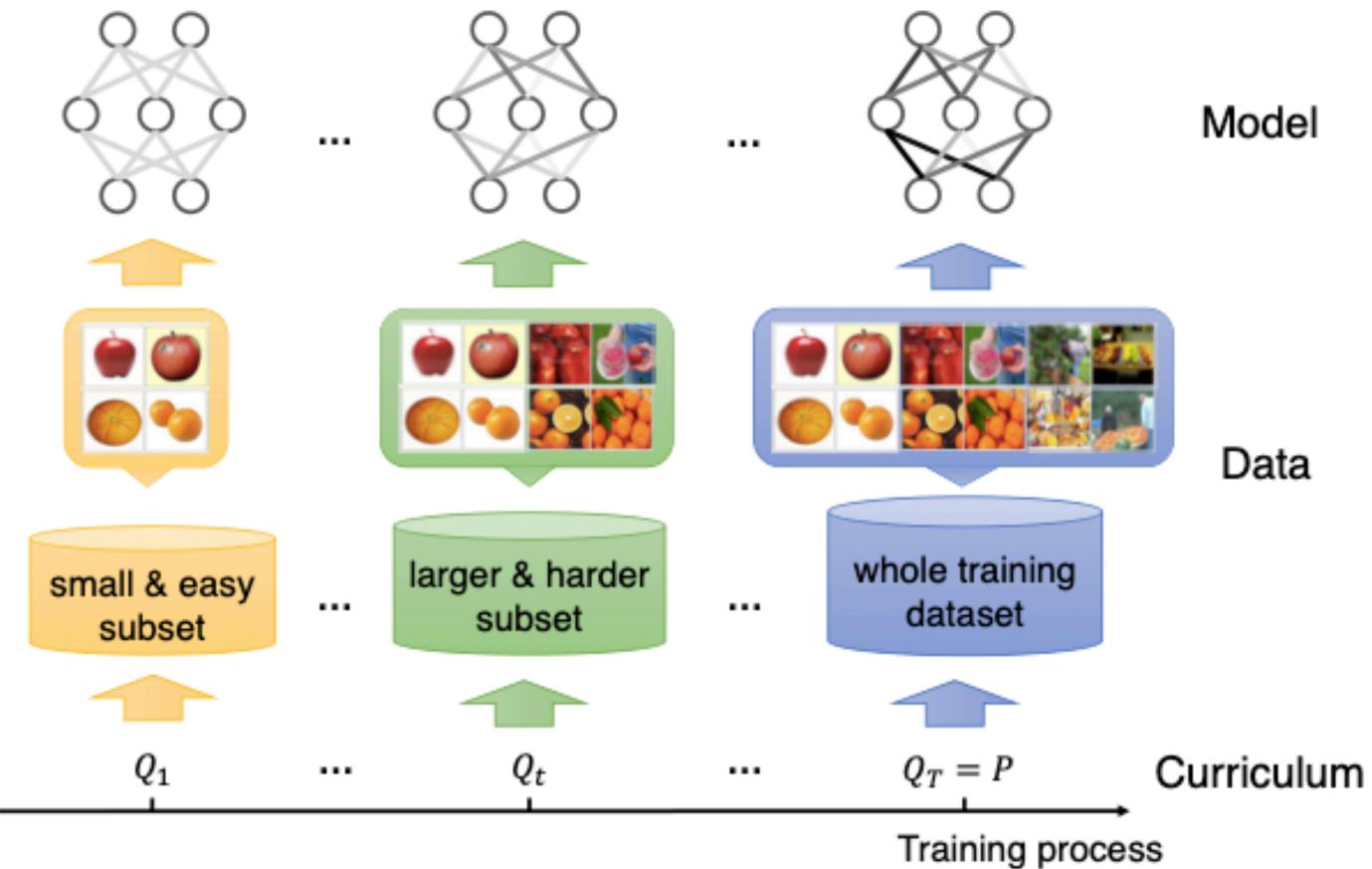
- Example: Ranking language model trained with vs without curriculum on Wikipedia
- "Error" is log of the rank of the next word (within 20k-word) vocabulary).
- 1. The curriculum-trained model skips examples with words outside of 5k most frequent words
- 2. Then skips examples outside 10k most frequent words and so on





Bengio et al, "Curriculum Learning", ICML 2009

# **Challenge: concept difficulty**



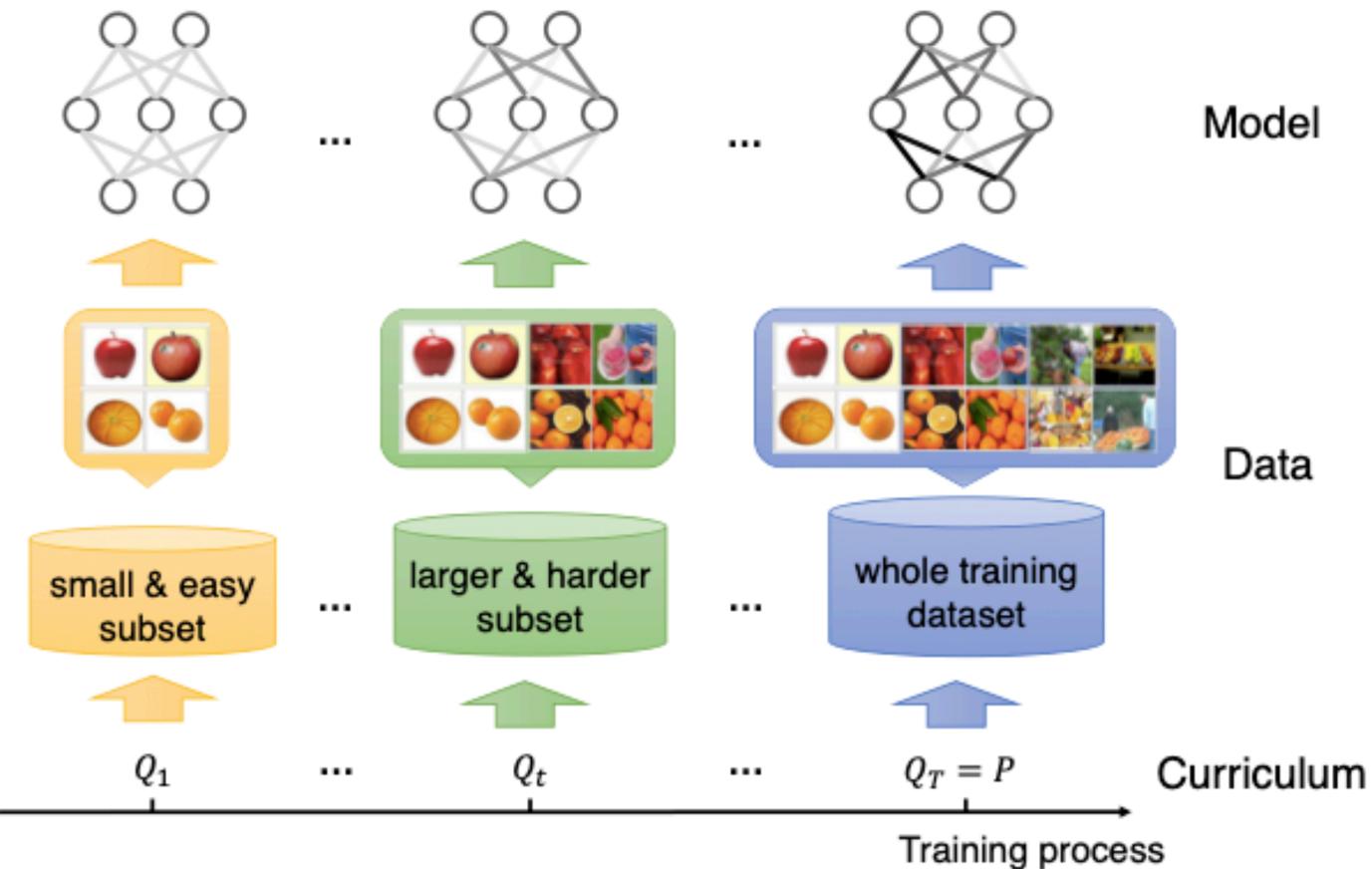
Wang et al, "A Survey on Curriculum Learning", TPAMI 2021







# **Challenge: concept difficulty**



Wang et al, "A Survey on Curriculum Learning", TPAMI 2021

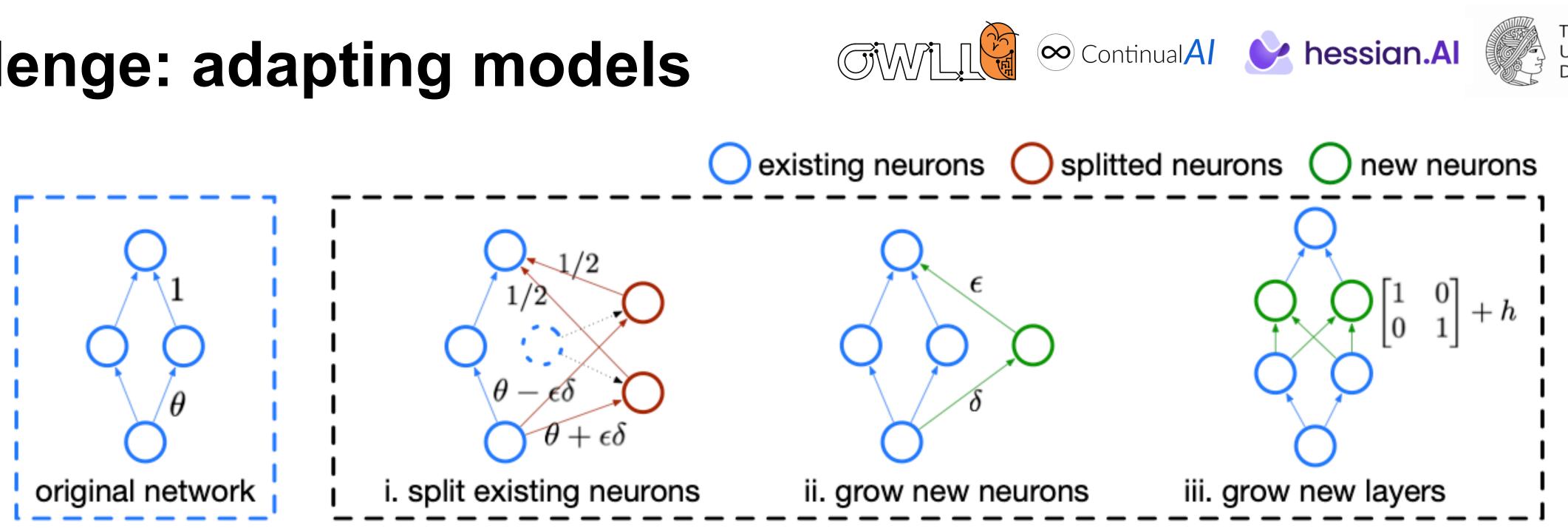


### The model choice in this picture remains the same, do you think this is sufficient?





# Challenge: adapting models

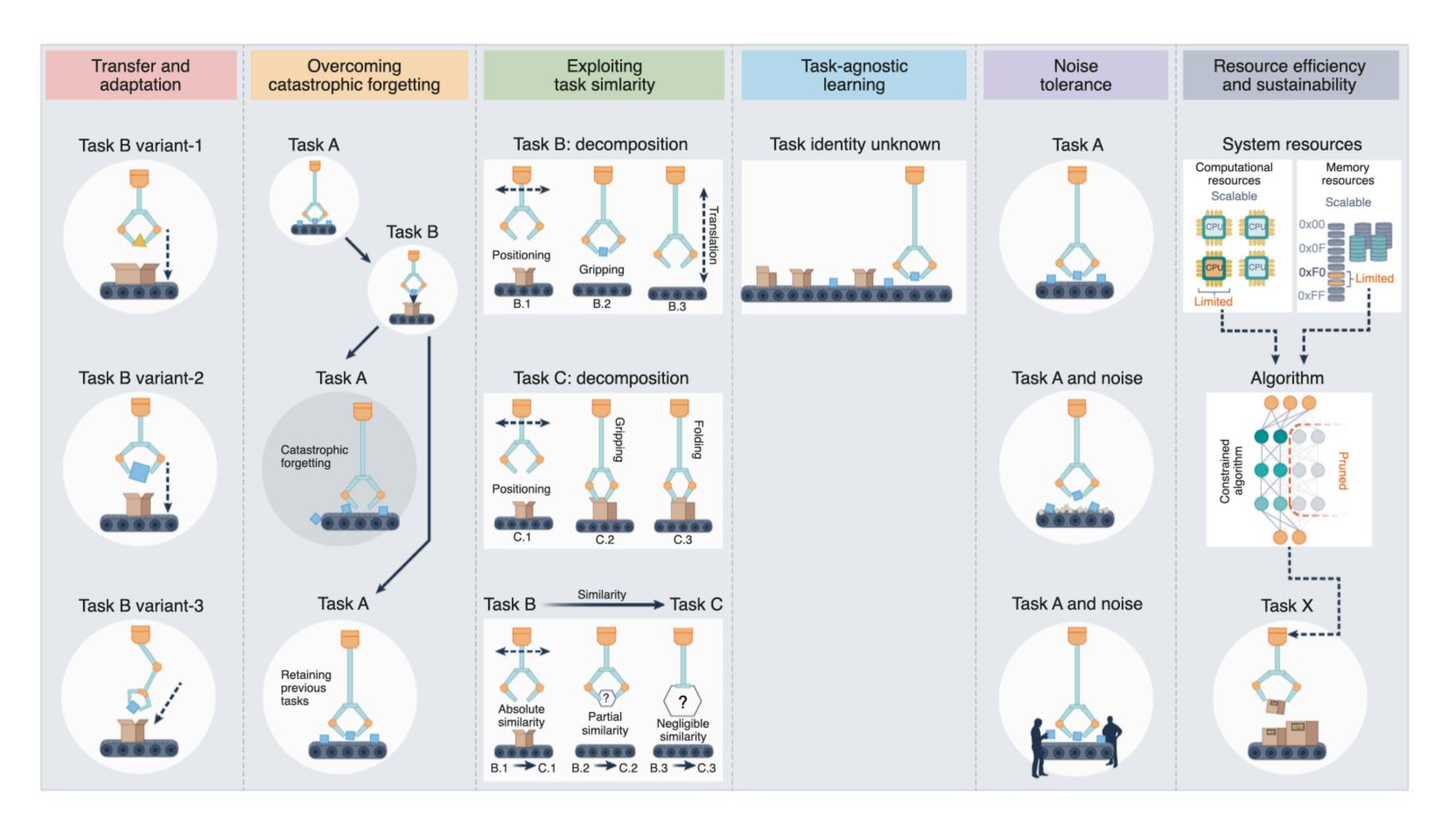


But is our initial model choice and its practical realization still good enough? What if complexity changes? Or even the inductive bias should be altered?

Wu & Liu et al, "Firefly Neural Architecture Descent: A General Approach for Growing Neural Networks", NeurIPS 2020



# **Challenges: all together?**



Kudithipudi et al, "Biological underpinnings for lifelong learning machines", Nature Machine Intelligence (4), 2022



Ideally, we may want all together, as hypothesized for biological systems!





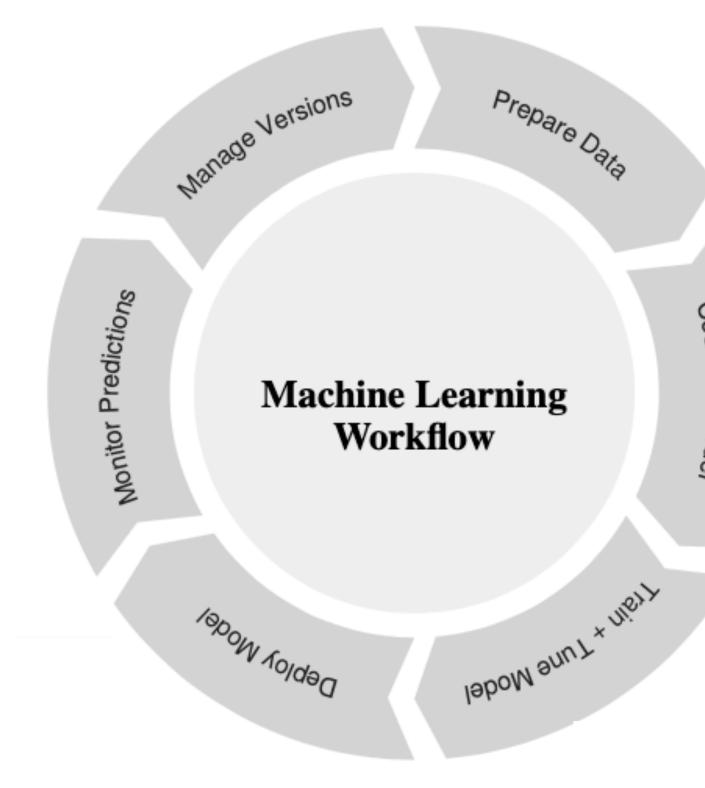


# Summary of course objectives & content



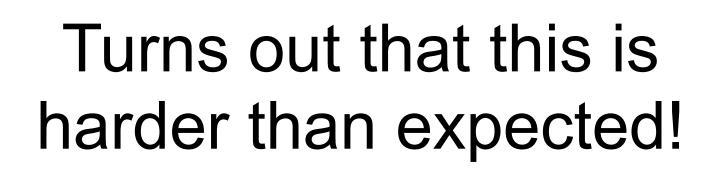


### Can we just iterate?



Mundt et al, "CLEVA-Compass: A Continual Learning Evaluation Assessment Compass to Promote Research Transparency and Comparability", ICLR 2022





Code ML Mode/



#### From static ML workflow ...

Versioning: stage versions according to prediction evaluation and deployment

Prediction: test set evaluation, failure modes and robustness

Deployment: model saving, platform compatibility, serving and cloud

Machine Learning Workflow

Deploy Model

Nanage Versions

Monitor Predictions

ISDOM SUNT + NIGHT

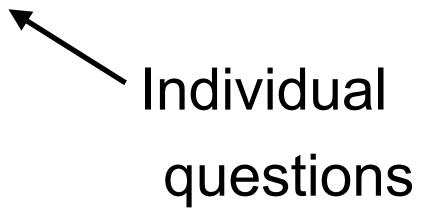
Prepare Data

Code ML Mode/

Mundt et al, "CLEVA-Compass: A Continual Learning Evaluation Assessment Compass to Promote Research Transparency and Comparability", ICLR 2022



Data: amount, redundancy vs. diversity, cleaning, preprocessing

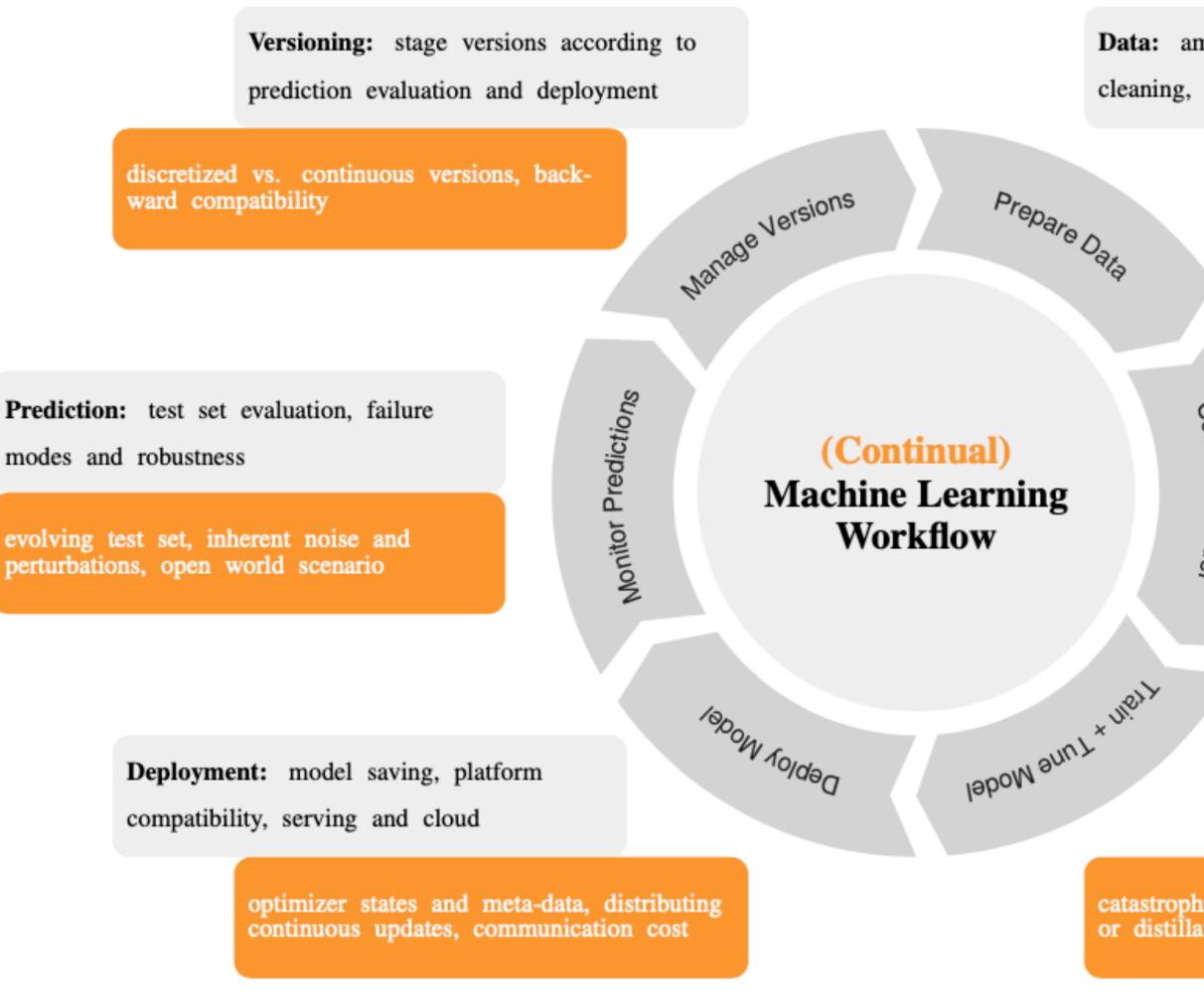


Model: architecture, inductive bias, discriminative/generative, functions, parameters

Training: loss function, optimizer, hyperparameters, convergence



### ... to continual ML ...



Mundt et al, "CLEVA-Compass: A Continual Learning Evaluation Assessment Compass to Promote Research Transparency and Comparability", ICLR 2022



Data: amount, redundancy vs. diversity, cleaning, preprocessing

> data selection and ordering, task similarity, noisy streams, distribution shifts

#### Continual dependencies & synergies

Code ML Mode,

Model: architecture, inductive bias, discriminative/generative, functions, parameters

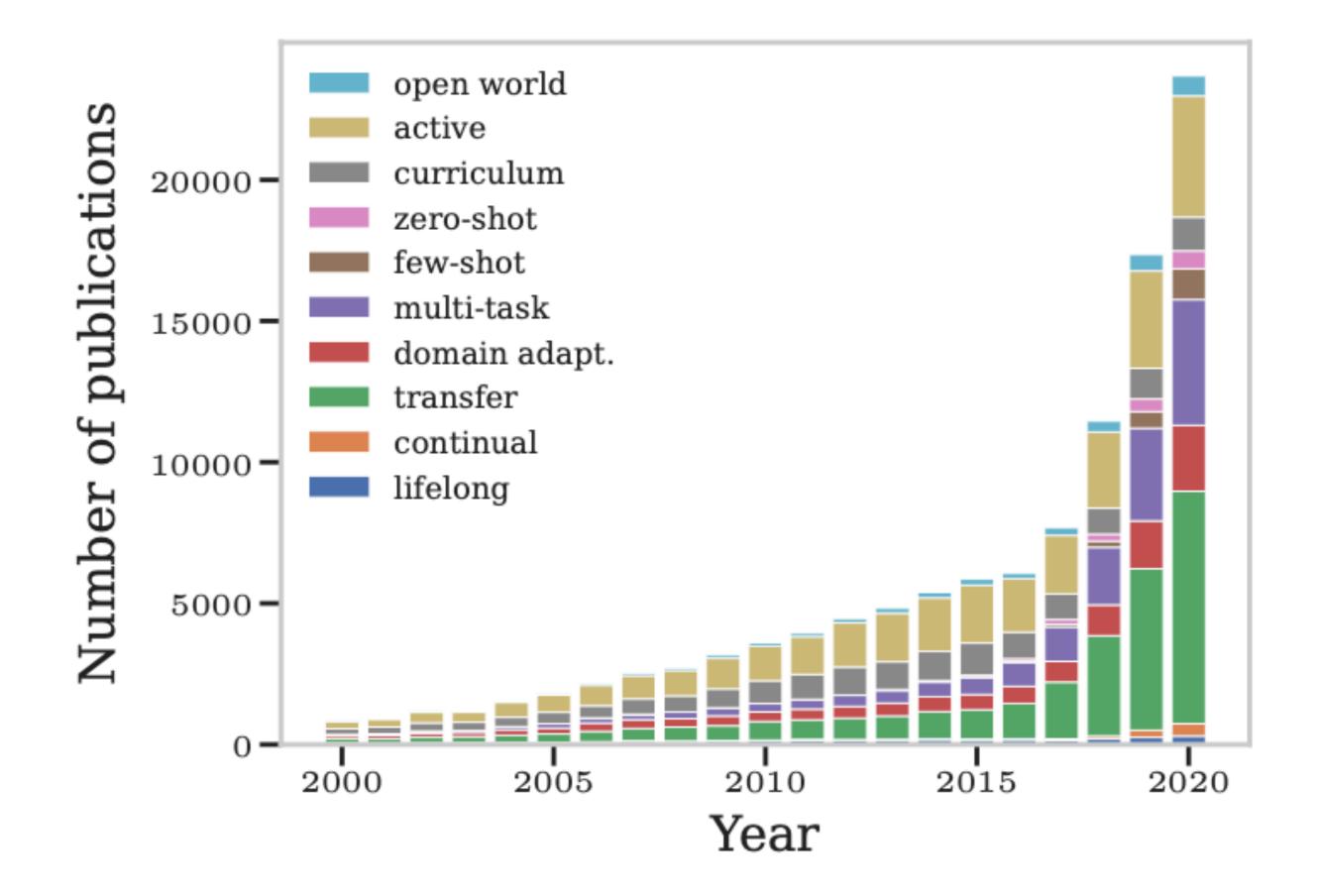
model extensions, task-specific parameter identification

Training: loss function, optimizer, hyperparameters, convergence

catastrophic forgetting, knowledge transfer or distillation, selective updates, online



# to dependencies & synergies



Mundt et al, "CLEVA-Compass: A Continual Learning Evaluation Assessment Compass to Promote Research Transparency and Comparability", ICLR 2022



# We try to gain understanding in this course

