
Machine Learning
Beyond Static Datasets

Dr. Martin Mundt,

Research Group Leader, TU Darmstadt & hessian.AI

Board Member of Directors, ContinualAI

Course: http://owll-lab.com/teaching/essai-23

Day 3: From Past to Future
Memory & Growth

ESSAI 2023

http://owll-lab.com/teaching/essai-23

Pseudo-rehearsal & why generative models fit both
perspectives to avoid forgetting seen so far

• A discriminative model typically learns something like p(y|x)

• A generative model also learns about the data distribution p(x) & the
process by which data is created (the generative factors)

What are generative models & why should we care?

• A discriminative model typically learns something like p(y|x)

• A generative model also learns about the data distribution p(x) & the
process by which data is created (the generative factors)

• Having a generative model does not mean we cannot also solve
discriminative tasks p(x,y) = p(y|x)p(x)

What are generative models & why should we care?

Let’s pick one type of model specifically to go through:
(variational) autoencoders

• Learn an “encoding” of the data

• Encoder maps to a “latent code”

• Decoder reconstructs the input

Why Autoencoders? To see that we don’t necessarily
require two models in the ML perspective

https://www.compthree.com/blog/autoencoder/

The latent embedding/variables may be difficult to grasp if unconstrained.
But we could constrain the latent space to follow a specific distribution,
e.g. a Variational Autoencoder

Variational Autoencoders (Kingma & Welling, ICLR 14)

https://kvfrans.com/content/images/2016/08/vae.jpg

• A dataset with variable x

• Data is generated by a random process involving unobserved random variable z

Skipping the VAE derivation to distill its essence

• A dataset with variable x

• Data is generated by a random process involving unobserved random variable z

• z is generated from some prior distribution

• A value x is generated from some conditional distribution

pθ(z)

pθ(x |z)

Skipping the VAE derivation to distill its essence

• A dataset with variable x

• Data is generated by a random process involving unobserved random variable z

• z is generated from some prior distribution

• A value x is generated from some conditional distribution

But the parameters and values of latent variables z are not known to us.  

 is intractable

pθ(z)

pθ(x |z)

pθ(x) = ∫ pθ(x, z)dz

Skipping the VAE derivation to distill its essence

TL;DR; derivation: approximate & get a lower bound to data distribution p(x)

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

Skipping the VAE derivation to distill its essence

TL;DR; derivation: approximate & get a lower bound to data distribution p(x)

• The 1. term is the expected reconstruction error given by the log-
likelihood (with sampling)

• The 2. term is a KL divergence encouraging the "approximate posterior"
to be close to a prior (of our choice)

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

Skipping the VAE derivation to distill its essence

• Probabilistic encoder -> given a datapoint x it produces a distribution
over possible values of z from which it could have been generated

• Probabilistic decoder -> produces a distribution over possible values of
x given z

VAE: summary

How does this model help us in avoiding forgetting?

What have we gained?

https://www.jeremyjordan.me/variational-autoencoders/ and https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://www.jeremyjordan.me/variational-autoencoders/
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

What have we gained?

https://www.jeremyjordan.me/variational-autoencoders/ and https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://www.jeremyjordan.me/variational-autoencoders/
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

• We can sample from a trained model:
, here , 

 and then generate (decode) x

• We also have the approximation to our

data distribution p(x) that we could
regularize in continual learning

z ∼ p(z) 𝒩(0,I)

https://www.compthree.com/blog/autoencoder/

What have we gained?

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

Variational Continual Learning

The “likelihood focused” perspective:
generative/pseudo rehearsal

• Generate old tasks’ data and
concatenate it with new task data

• Primarily optimize “the likelihood” (left)

See Nguyen et al, “Variational Continual Learning” ICLR 2018 & follow-ups like Farquhar et al “A Unifying Bayesian View of Continual Learning”, NeurIPS workshops 2018

ℒ(θ, ϕ; x) = 𝔼z∼qϕ(z|x) [log pθ(x |z)] − KL [qϕ(z |x) | |pθ(z)]

Variational Continual Learning

The “prior focused” perspective:
regularization/distillation

• Only use new task data

• Use the posterior of an old task as the

new task’s prior KL [qt(z) | |qt−1(z)]
See Nguyen et al, “Variational Continual Learning” ICLR 2018 & follow-ups like Farquhar et al “A Unifying Bayesian View of Continual Learning”, NeurIPS workshops 2018

The “likelihood focused” perspective:
generative/pseudo rehearsal

• Generate old tasks’ data and
concatenate it with new task data

• Primarily optimize “the likelihood” (left)

Nguyen et al, “Variational Continual Learning” ICLR 2018

Variational Continual Learning

Both perspectives are valuable, but storing data is not always
desired & can be a “trivial" solution. What do we desire?

What could our expectations be, what might we desire?
• Constant memory budget?

• Pragmatically? Selection that outperforms randomly stored data points?

• A way to shrink the memory buffer to add new tasks, e.g. recursively

select exemplars?

• Knowledge of the distribution(s) and a subset with guarantees?

• A natural formulation to allow (pseudo-)rehearsal, regularization…?

• …. many more …?

Let's summarize: what could we want?

There’s a third way to think about forgetting

In our example: we can now use task-specific priors - a “Gaussian" per task

CURL: task specific Gaussians

Rao et al, “Continual Unsupervised Representation
Learning”, NeurIPS 2019

In essence: we are looking at dynamic/modular architectures
“Catastrophic forgetting is a direct consequence of the overlap of distributed

representations and can be reduced by reducing this overlap.” 
Robert French, “Using Semi-Distributed Representations to Overcome 

 Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

The third pillar of forgetting: dynamic architectures

In essence: we are looking at dynamic/modular architectures
“Catastrophic forgetting is a direct consequence of the overlap of distributed

representations and can be reduced by reducing this overlap.” 
Robert French, “Using Semi-Distributed Representations to Overcome 

 Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

”Very local representations will not exhibit catastrophic forgetting because
there is little interaction among representations. However, a look-up table
lacks the all-important ability to generalize. … you can’t have it both ways.”

The third pillar of forgetting: dynamic architectures

Variant A: Implicit Dynamic/Modular Architectures

The “implicit" perspective

• Recall regularization: identify important parameters, constrain those

➡We could assume over-parametrization + try to “sparsify” our parameters

➡Route through “sub-models” that are responsible for a specific task

The implicit perspective

Example: activation sharpening (semi-distributed representations)

• Increase activation of some k nodes, decrease that of others

• Suggestion, overlap as a sum of the smaller activations, the “shared”

activation, as a measure of interference

The implicit perspective: activation overlap

Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

Example: activation sharpening (semi-distributed representations)

• Increase activation of some k nodes, decrease that of others

• Suggestion, overlap as a sum of the smaller activations, the “shared”

activation, as a measure of interference

• Four hidden unit example: (0.2, 0.1, 0.9, 0.1) & (0.2, 0.0, 1.0, 0.2)  

Activation overlap: (0.2 + 0.0 + 0.9 + 0.1) / 4 = 0.3

• A non interfering example: (1, 0, 0, 0) & (0, 0, 1, 0) have 0 overlap

The implicit perspective: activation overlap

Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

An algorithm? increase activation of k nodes, decrease that of others

The implicit perspective: activation overlap

Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

Robert French, “Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks”, AAAI 1993

The implicit perspective: activation overlap

A newer example: PathNets

• Start with an over-
parametrized model

• Constrain a task to use a
subset of parameters

• Enforce a small/fixed
number of active
modules/“paths”

The implicit perspective: activation overlap

Fernando et al, “PathNet: Evolution Channels Gradient Descent in Super Neural Networks”, arXiv:1701.08734, 2017

We still need better notions of representation overlap (in deep learning)

The implicit perspective: choice of model & scale

Ramasesh et al, “Effect of Model and Pretraining Scale on Catastrophic Forgetting in Neural Networks”, ICLR 2022

Some models may be more suitable than others: orthogonal representations?

The implicit perspective: choice of model & scale

Ramasesh et al, “Effect of Model and Pretraining Scale on Catastrophic Forgetting in Neural Networks”, ICLR 2022

There are many ways to go
about task specific subsets of
parameters/modules:

• Activation overlap

• Parameter sparsity

• “Attention” masks

• “gates"… etc.

Summary: “implicit” (over-parametrized) perspective

Serrà et al,“Overcoming Catastrophic Forgetting with Hard Attention to the Task”, ICML 2018

Surely interesting, but what about energy & compute?
Variant B: Starting small & growing explicitly

Our initial model choice & its practical realization may not good enough
anymore. Complexity might change, inductive bias might be altered …

Explicit perspective:
changing (neural) model architectures over time

Wu & Liu et al, “Firefly Neural Architecture Descent: A General Approach for Growing Neural Networks”, NeurIPS 2020

“After two decades of research, the neurosciences have come a long way from
accepting that neural stem/progenitor cells generate new neurons in the adult
mammalian hippocampus to unraveling the functional role of adult-born neurons
in cognition and emotional control.  
The finding that new neurons are born and become integrated into a
mature circuitry throughout life has challenged and subsequently reshaped
our understanding of neural plasticity in the adult mammalian brain.”

 
(Quote: Vadodaria & Jessberger, “Functional neurogenesis in the adult hippocampus: then and now”, frontiers in neuroscience 8,
2014, see also C. Gross, “Neurogenesis in the adult brain: death of a dogma”, Nature Reviews Neuroscience, 2000)

Explicit perspective & neurogenesis

Small initial amount of parameters!

1st crucial question:  
When do we add?

• Assumes decaying exponential for

the error

• Adds node when error plateaus

Inspiration from neurogenesis: dynamic node creation

T. Ash, “Dynamic Node Creation in Backpropagation Networks”,
Connection Science 1:4, 1989

2nd question: when do we stop?

• Calculate ratio over the drop in
average error (a) across some
window (w) of time (t)

• Stop when relative improvement
becomes too small:

• Alternatively: cutoff (C)

at − at−w

at0
< ΔT

at ≤ Ca

Inspiration from neurogenesis: dynamic node creation

T. Ash, “Dynamic Node Creation in Backpropagation Networks”,
Connection Science 1:4, 1989

Has been empirically investigated on some “simpler” test problems

Inspiration from neurogenesis: dynamic node creation

T. Ash, “Dynamic Node Creation in Backpropagation Networks”, Connection Science 1:4, 1989

Squared error (y axis) for the ADD3 problem

Inspiration from neurogenesis: dynamic node creation

T. Ash, “Dynamic Node Creation in Backpropagation Networks”, Connection Science 1:4, 1989

Squared error (y axis) for the ADD3 problem

Inspiration from neurogenesis: dynamic node creation

T. Ash, “Dynamic Node Creation in Backpropagation Networks”, Connection Science 1:4, 1989

Technically, 3rd crucial question
(not taken into account here):  
what/how do we add?

• one parameter or many?

• neural network layers?

• a different output head if our tasks

are different?

Inspiration from neurogenesis: dynamic node creation

T. Ash, “Dynamic Node Creation in Backpropagation Networks”,
Connection Science 1:4, 1989

• Start with a single “column” of
parameters

• Add “column” for new task +
freeze old columns

• New columns receive lateral
connections

➡Transfer where possible & avoid
forgetting

A newer example: progressive networks

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016

We can evaluate and analyze similarly to what we have already seen, 
 when we talked about knowledge transfer

A newer example: progressive networks

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016

We can evaluate and analyze similarly to what we have already seen, 
 when we talked about knowledge transfer

A newer example: progressive networks

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016

We can evaluate and analyze similarly to what we have already seen, 
 when we talked about knowledge transfer

A newer example: progressive networks

Rusu et al, “Progressive Neural Networks”, arXiv:1606.04671, 2016

Various combinations with partial re-training with expansion

And finally many many more ways that combine ideas:
e.g. Dynamically Expandable Nets

DENProgressive NetsEWC

Yoon et al, “Lifelong Learning with Dynamically Expandable Networks”, ICLR 2018

Intermediate summary: three perspectives to avoid
forgetting & a massive elephant in the room

Regularize important parameters:  
Identify relevant parameters for a task &
make sure they do not change much, or
make sure the input output relationship
remains the same 

Rehearsal: 
Store a subset of data to rehearse or make
use of a generative model to generate

Modify the architecture:  
Use task specific masks in an
overparameterized model or grow/expand

General ways to alleviate forgetting?

Figure from “A Wholistic View of Deep Neural Networks: Forgotten Lessons and
the Bridge to Active and Open World Learning”, Mundt et al, Neural Networks

2023 (Categorization found in several reviews & 30 years ago already)

What is the elephant in the room?

It’s not just about forgetting: it’s generally about finding suitable capacity

Recall the first lecture’s machine learning intro

Deep Learning, Goodfellow, Bengio, Courville, MIT Press 2016

Growing models is about finding the right capacity,
but also about the ability to handle future data!

In essence:

How to pick data to add over time?

Where does (future) data come from? Active learning

Figure from Mundt et al, “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten
Lessons and the Bridge to Active and Open World Learning, Neural Networks 160, 2023

In essence:

How to pick data to add over time?

Before we go through the details:
let’s assume we have some way
to filter new data & answer how
model growth is related to this

Where does (future) data come from? Active learning

Figure from Mundt et al, “A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten
Lessons and the Bridge to Active and Open World Learning, Neural Networks 160, 2023

Number of “blocks"

From past to present to future:
a growing model with active data queries example

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurIPS 2019

Incremental architecture: For
every new data batch, evaluate
three architecture choices

1. The present architecture

2. One with expanded width

3. One that also adds layers

Greedily select the best candidate
in terms of a validation dataset

From past to present to future:
a growing model with active data queries example

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurIPS 2019

What kind of architecture do you
think is depicted in the 3 curves?

What kind of architecture do you
think is depicted in the 3 curves?

1. Black (-): incremental architecture

2. Blue (--): fixed Resnet (large)

3. Red (--): fixed & small  

(start of the incremental one)

From past to present to future:
a growing model with active data queries example

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurIPS 2019

Consistent for different ways to actively pick data

From past to present to future:
a growing model with active data queries example

Geifman & El-Yaniv, “Deep Active Learning with a Neural Architecture Search”, NeurIPS 2019

Now that we have realized that model growth is about
past & future, let’s dive into data selection mechanisms

